GULP

Bibliography

1
E. Madelung.
Das elektrische feld in systemen von regelmaessig angeordneten punktladungen.
Phys. Z., 19:524-532, 1918.

2
M. Born and J.E. Mayer.
Zur gittertheorie der ionenkristalle.
Z. Physik, 75:1-18, 1932.

3
A.F. Kapustinskii.
Lattice energy of ionic crystals.
Quart. Rev. Chem. Soc., 10:283-294, 1956.

4
M.J. Norgett.
A user's guide to hades.
Technical Report AERE-R7015, AERE Harwell Laboratory, 1972.

5
J.H. Harding.
A guide to midas.
Technical Report AERE-R13127, AERE Harwell Laboratory, 1988.

6
J.H. Harding.
A guide to the harwell pluto program.
Technical Report AERE-R10546, AERE Harwell Laboratory, 1982.

7
M. Leslie.
Cascade.
Technical Report DLSCITM36T, Daresbury Laboratory, 1984.

8
S.C. Parker and G.D. Price.
Computer modelling of phase transitions in minerals.
Adv. Solid State Chem., 1:295-327, 1989.

9
D.J. Willock, S.L. Price, M. Leslie, and C.R.A. Catlow.
The relaxation of molecular crystal structures using a distributed multipole electrostatic model.
J. Comp. Chem., 16:628-647, 1995.

10
W.R. Busing.
Wmin, a computer program to model molecules and crystals in terms of potential energy functions.
Technical Report ORNL-5747, Oak Ridge National Laboratory, 1981.

11
D.E. Williams.
Molecular packing analysis.
Acta Cryst. A, 28:629-635, 1972.

12
G. Eckold, M. Stein-Arsic, and H.J. Weber.
Unisoft - a program package for lattice dynamical calculations.
J. Appl. Cryst., 20:134-139, 1987.

13
W.F. van Gunsteren and H.J.C. Berendsen.
Groningen molecular simulation (gromos) library manual.
Technical report, Biomos, Groningen, 1987.

14
D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel, and P. Kollman.
Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules.
Comput. Phys. Commun., 91:1-41, 1995.

15
B.R. Brooks, R.E. Bruccoleri, B.D. Olfson, D.J. States, S. Swaminathan, and M. Karplus.
Charmm: A program for macromolecular energy, minimization, and dynamics calculations.
J. Comp. Chem., 4:187-217, 1983.

16
W. Smith and T.R. Forester.
Dl_poly_2.0: A general purpose parallel molecular dynamics simulation package.
J. Mol. Graphics, 14:136-141, 1996.

17
W. Smith, C.W. Yong, and P.M. Rodger.
Dl_poly: application to molecular simulation.
Mol. Simul., 28:385-471, 2002.

18
G. Watson, E.T. Kelsey, N.H. de Leeuw, D.J. Harris, and S.C. Parker.
Atomistic simulation of dislocations, surfaces and interfaces in mgo.
J. Chem. Soc., Faraday Trans., 92:433-438, 1996.

19
M.B. Taylor, G.D. Barrera, N.L. Allan, T.H.K. Barron, and W.C. Mackrodt.
Shell: A code for lattice dynamics and structure optimisation of ionic crystals.
Comp. Phys. Commun., 109:135-143, 1998.

20
J.D. Gale.
Semi-empirical methods as a tool in solid state chemistry.
Faraday Discuss., 106:219-232, 1997.

21
H.M. Evjen.
On the stability of certain heteropolar crystals.
Phys. Rev., 39:675-687, 1932.

22
P.P. Ewald.
Die berechnung optischer und elektrostatisher gitterpotentiale.
Ann. Phys., 64:253-287, 1921.

23
M.P. Tosi.
Cohesion of ionic solids in the born model.
Solid State Phys., 16:1-120, 1964.

24
R.A. Jackson and C.R.A. Catlow.
Computer simulation studies of zeolite structure.
Mol. Simul., 1:207-224, 1988.

25
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen.
A smooth particle mesh ewald method.
J. Chem. Phys., 103:8577-8595, 1995.

26
L. Greengard and V. Rokhlin.
A fast algorithm for particle simulations.
J. Comput. Phys., 73:325-348, 1987.

27
H.G. Petersen, D. Soelvason, J.W. Perram, and Smith E.R.
A very fast multipole method.
J. Chem. Phys., 101:8870-8876, 1994.

28
S.W. de Leeuw, J.W. Perram, and E.R. Smith.
Simulation of electrostatic systems in periodic boundary conditions. i. lattice sums and dielectric constants.
Proc. R. Soc. London, Ser. A, 373:27-56, 1980.

29
M. Leslie and M.J. Gillan.
The energy and elastic dipole tensor of defects in ionic-crystals calculated by the supercell method.
J. Phys. C, Solid State Phys., 18:973-982, 1985.

30
D.E. Parry.
The electrostatic potential in the surface region of an ionic crystal.
Surf. Sci., 49:433-440, 1975.

31
D.E. Parry.
Errata: The electrostatic potential in the surface region of an ionic crystal.
Surf. Sci., 54:195-195, 1976.

32
E. Wasserman, J.R. Rustad, and A.R. Felmy.
Molecular modeling of the surface charging of hematite i. the calculation of proton affinities and acidites on a surface.
Surf. Sci., 424:19-27, 1999.

33
J.H. Harding.
A guide to midas.
Technical Report AERE R-13127, AERE Harwell Laboratory, 1988.

34
A. Arnold and C. Holm.
A novel method for calculating electrostatic interactions in 2d periodic slab geometries.
Chem. Phys. Lett., 354:324-330, 2002.

35
V.R. Saunders, C. Freyia-Fava, R. Dovesi, and C. Roetti.
On the electrostatic potential in linear periodic polymers.
Comp. Phys. Commun., 84:156-172, 1994.

36
D. Wolf, P. Keblinski, S.R. Philpot, and J. Eggebrecht.
Exact method for the simulation of coulombic systems by spherically truncated, pairwise $r^{-1}$ summation.
J. Chem. Phys., 110:8254-8282, 1999.

37
R.S. Mulliken.
Electronic population analysis on lcao-mo molecular wave functions. i.
J. Chem. Phys., 23:1833-1840, 1955.

38
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi.
Phonons and related crystal properties from density-functional perturbation theory.
Rev. Mod. Phys., 73:515-562, 2001.

39
R.T. Sanderson.
An interpretation of bond lengths and a classification of bonds.
Science, 114:670-672, 1951.

40
K.A. van Genechten, W.J. Mortier, and P. Geerlings.
Intrinsic framework electronegativity: A novel concept in solid state chemistry.
J. Chem. Phys., 86:5063-5071, 1987.

41
A.K. Rappe and W.A. Goddard III.
Charge equilibration for molecular dynamics simulations.
J. Phys. Chem., 95:3358-3363, 1991.

42
S.L. Njo, J.F. Fan, and B. van de Graaf.
Extending and simplifying the electronegativity equalization method.
J. Mol. Catal. A, 134:79-88, 1998.

43
D.E. Williams.
Accelerated convergence treatment of \( r^{-n} \) lattice sums.
Cryst. Rev., 2:3-25, 1989.

44
K.T. Tang and J.P. Toennies.
An improved simple-model for the van der waals potential based on universal damping functions for the dispersion coefficients.
J. Chem. Phys., 80:3726-3741, 1984.

45
J. Applequist.
A multipole interaction theory of electric polarization of atomic and molecular assemblies.
J. Chem. Phys., 83:809-826, 1985.

46
T. Beyer, G.M. Day, and S.L. Price.
The prediction, morphology, and mechanical properties of the polymorphs of paracetamol.
J. Am. Chem. Soc., 123:5086-5094, 2001.

47
P.A. Madden and M. Wilson.
'covalent' effects in 'ionic' systems.
Chem. Soc. Rev., pages 339-350, 1996.

48
J.H. Harding and N.C. Pyper.
The meaning of the oxygen 2nd-electron affinity and oxide potential models.
Phil. Mag. Lett., 71:113-121, 1995.

49
B.G. Dick and A.W. Overhauser.
Theory of the dielectric constants of alkali halide crystals.
Phys. Rev., 112:90-103, 1958.

50
R. Car and M. Parinello.
Unified approach for molecular-dynamics and density-functional theory.
Phys. Rev. Lett., 55:2471-2474, 1985.

51
P.J.D. Lindan and M.J. Gillan.
Shell-model molecular-dynamics simulation of superionic conduction in $caf_{2}$.
J. Phys. Condens. Matter, 5:1019-1030, 1993.

52
U. Schroeder.
A new model for lattice dynamics (breathing shell model).
Solid State Commun., 4:347-349, 1966.

53
P.M. Axilrod and E. Teller.
Interaction of the van der waals type between three atoms.
J. Chem. Phys., 11:299-300, 1943.

54
A. Banerjea and J.R. Smith.
Origins of the universal binding-energy relation.
Phys. Rev. B, 37:6632-6645, 1988.

55
A.P. Sutton and J. Chen.
Long-range finnis-sinclair potentials.
Phil. Mag. Lett., 61:139-146, 1990.

56
M.W. Finnis and J.E. Sinclair.
A simple empirical n-body potential for transition metals.
Phil. Mag. A, 50:45-55, 1984.

57
J. Cai and Y.Y. Ye.
Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys.
Phys. Rev. B, 54:8398-8410, 1996.

58
G.C. Abell.
Empirical chemical pseudopotential theory of molecular and metallic bonding.
Phys. Rev. B, 31:6184-6196, 1985.

59
J. Tersoff.
New empirical-model for the structural-properties of silicon.
Phys. Rev. Lett., 56:632-635, 1986.

60
J. Tersoff.
New empirical-approach for the structure and energy of covalent systems.
Phys. Rev. B, 37:6991-7000, 1988.

61
D.G. Pettifor, I.I. Oleinik, D. Nguyen-Manh, and V. Vitek.
Bond-order potentials: bridging the electronic to atomistic modelling hierarchies.
Comp. Mater. Sci., 23:33-37, 2002.

62
D.W. Brenner.
Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films.
Phys. Rev. B, 42:9458-9471, 1990.

63
D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott.
A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons.
J. Phys.: Condens. Matter, 14:783-802, 2002.

64
J. Che, T. Cagin, and W.A. Goddard III.
Generalized extended empirical bond-order dependent force fields including nonbond interactions.
Theor. Chem. Acc., 102:346-354, 1999.

65
A. Einstein.
Die plancksche theorie der strahlung und die theorie der spezifischen waerme.
Ann. Phys., 22:180-190, 1907.

66
D. Frenkel and A.J.C. Ladd.
New monte carlo method to compute the free energy of arbitrary solids. application to the fcc and hcp phases of hard spheres.
J. Chem. Phys., 81:3188-3193, 1981.

67
G. Paglia, A.L. Rohl, C.E. Buckley, and J.D. Gale.
A computational investigation of the structure of \( \kappa
\)-alumina using interatomic potentials.
J. Mater. Chem., 11:3310-3316, 2001.

68
G.W. Watson and D.J. Willock.
The enumeration of structures for \( \gamma \) -alumina based on a defective spinel structure.
Chem. Commun., pages 1076-1077, 2001.

69
N.L. Allan, G.D. Barrera, M.Y. Lavrentiev, I.T. Todorov, and J.A. Purton.
Ab initio calculation of phase diagrams of ceramics and minerals.
J. Mater. Chem., 11:63-68, 2001.

70
P.J.M. van Laarhoven and E.H.L. Aarts.
Simulated annealing: Theory and applications.
Reidel, 1987.

71
J.H. Holland.
Adaption in natural and artificial systems.
The University of Michigan Press, 1975.

72
T.S. Bush, C.R.A. Catlow, and P.D. Battle.
Evolutionary programming techniques for predicting inorganic crystal-structures.
J. Mater. Chem., 5:1269-1272, 1995.

73
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.
Numerical recipes in Fortran: The art of scientific computing.
Cambridge University Press, 1986.

74
R. Fletcher and M.J.D. Powell.
A rapidly convergent descent method for minimization.
Comput. J., 6:163-168, 1964.

75
D.F. Shanno.
Conditioning of quasi-newton methods for function minimization.
Math. Comput., 24:647-656, 1970.

76
G. Mills, H. Jonsson, and G.K. Schenter.
Reversible work transition-state theory - application to dissociative adsorption of hydrogen.
Surf. Sci., 324:305-337, 1995.

77
A. Banerjee, N. Adams, J. Simons, and R. Shepard.
Search for stationary points on surfaces.
J. Phys. Chem., 89:52-57, 1985.

78
A.F. Voter, F. Montalenti, and T.C. Germann.
Extending the time scale in atomistic simulation of materials.
Ann. Rev. Materials Research, 32:321-346, 2002.

79
S.M. Woodley, P.D. Battle, J.D. Gale, and C.R.A. Catlow.
The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation.
Phys. Chem. Chem. Phys., 1:2535-2542, 1999.

80
D. Frenkel and B. Smit.
Understanding molecular simulation: from algorithms to applications.
Academic Press, 2001.

81
J.F. Nye.
Physical properties of crystals.
Oxford University Press, 1957.

82
J.W. Akitt.
NMR and chemistry.
Chapman and Hall, 1983.

83
R.F.W. Bader, T.T. Nguyendang, and Y. Tal.
A topological theory of molecular-structure.
Rep. Prog. Phys., 44:893-948, 1981.

84
W. Cochran and R.A. Cowley.
Dielectric constants and lattice vibrations.
J. Phys. Chem. Solids, 23:447-450, 1962.

85
J.M. Seddon and J.D. Gale.
Thermodynamics and statistical mechanics.
Royal Society of Chemistry, 2002.

86
A. Baldereschi.
Mean-value point in the brillouin zone.
Phys. Rev. B, 7:5212-5215, 1973.

87
D.J. Chadi and M.L. Cohen.
Special points in the brillouin zone.
Phys. Rev. B, 8:5747-5753, 1973.

88
H.J. Monkhorst and J.D. Pack.
Special points for brillouin-zone integrations.
Phys. Rev. B, 13:5188-5192, 1976.

89
R. Ramirez and M.C. Boehm.
The use of symmetry in reciprocal space integrations - asymmetric units and weighting factors for numerical-integration procedures in any crystal symmetry.
Int. J. Quantum Chem., 34:571-594, 1988.

90
D.H. Gay and A.L. Rohl.
Marvin: A new computer code for studying surfaces and interfaces and its application to calculating the crystal morphologies of corundum and zircon.
J. Chem. Soc., Faraday Trans., 91:926-936, 1995.

91
P.W. Tasker.
The stability of ionic crystal surfaces.
J. Phys. C, 12:4977-4984, 1979.

92
J.D.H. Donnay and D. Harker.
A new law of crystal morphology extending the law of bravais.
Am. Miner., 22:446-467, 1937.

93
G. Wulff.
Zur frage der geschwindigkeitb des wachsthums und der auflosung der krystallflachen.
Z. Kryst., 34:449-530, 1901.

94
J.W. Gibbs.
Collected works.
New York, Longman, 1928.

95
P. Hartman and P. Bennema.
The attachment energy as a habit controlling factor 1. theoretical considerations.
J. Crystal Growth, 49:145-156, 1980.

96
M.P. Allen and D.J. Tildesley.
Computer simulation of liquids.
Oxford University Press, 1987.

97
R. LeSar, R. Najafabati, and D.J. Srolovitz.
Thermodynamics of solid and liquid embedded-atom-method metals - a variational study.
J. Chem. Phys., 94:5090-5097, 1991.

98
A.P. Sutton.
Direct free-energy minimization methods - application to grain-boundaries.
Phil. Trans. R. Soc. London A, 341:233-245, 1992.

99
E.W. Montroll.
Frequency spectrum of crystalline solids.
J. Chem. Phys., 10:218-229, 1942.

100
L.N. Kantorovich.
Thermoelastic properties of perfect crystals with nonprimitive lattices. 1. general-theory.
Phys. Rev. B, 51:3520-3534, 1995.

101
M.B. Taylor, G.D. Barrera, N.L. Allan, and T.H.K. Barron.
Free-energy derivatives and structure optimization with quasiharmonic lattice dynamics.
Phys. Rev. B, 56:14380-14390, 1997.

102
J.D. Gale.
Analytical free energy minimization of silica polymorphs.
J. Phys. Chem. B, 102:5423-5431, 1998.

103
N.L. Allan, T.H.K. Barron, and J.A.O. Bruno.
The zero static internal stress approximation in lattice dynamics, and the calculation of isotope effects on molar volumes.
J. Chem. Phys., 105:8300-8303, 1996.

104
N.F. Mott and M.J. Littleton.
Conduction in polar crystals. i. electrolytic conduction in solid salts.
Trans. Faraday Soc., 34:485-499, 1938.

105
C.R.A. Catlow, R. James, W.C. Mackrodt, and R.F. Stewart.
Defect energetics in $\alpha-al_{2} o_{3}$ and rutile $tio_{2}$.
Phys. Rev. B, 25:1006-1026, 1982.

106
N.L. Allinger, X.F. Zhou, and J. Bergsma.
Molecular mechanics parameters.
J. Mol. Struct. (Theochem), 118:69-83, 1994.

107
A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff.
Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations.
J. Am. Chem. Soc., 114:10024-10035, 1992.

108
S. Barlow, A.L. Rohl, S.G. Shi, C.M. Freeman, and D. O'Hare.
Molecular mechanics study of oligomeric models for poly(ferro cenylsilanes) using the extensible systematic forcefield (esff).
J. Am. Chem. Soc., 118:7578-7592, 1996.

109
J.D. Gale, C.R.A. Catlow, and W.C. Mackrodt.
Periodic ab initio determination of interatomic potentials for alumina.
Modelling Simul. Mater. Sci. Eng., 1:73-81, 1992.

110
R.G. Gordon and Y.S. Kim.
Theory for the forces between closed-shell atoms and molecules.
J. Chem. Phys., 56:3122-3133, 1972.

111
J.D. Gale.
Empirical potential derivation for ionic materials.
Phil. Mag. B, 73:3-19, 1996.

112
T.J. Grey, J.D. Gale, and D. Nicholson.
Parameterization of a potential function for the $ca^{2+}-ne$ and $ca^{2+}-n_{2}$ interactions using high-level ab initio data.
Mol. Phys., 98:1565-1573, 2000.

113
C.R.A. Catlow and M.J. Norgett.
Lattice structure and stability of ionic materials.
Technical Report AERE-M2936, AERE Harwell Laboratory, 1976.

114
C.R.A. Catlow and W.C. Mackrodt.
Theory of simulation methods for lattice and defect energy calculations in crystals.
Lecture Notes in Physics, 166:3-20, 1982.

115
J.D. Gale.
Gulp: A computer program for the symmetry-adapted simulation of solids.
J. Chem. Soc., Faraday Trans., 1:629-637, 1997.

116
S. Brode and R. Ahlrichs.
An optimized md program for the vector computer cyber-205.
Comp. Phys. Commun., 42:51-57, 1986.

117
C.R.A. Catlow, I.D. Faux, and M.J. Norgett.
Shell and breathing shell model calculations for defect formation energies and volumes in magnesium oxide.
J. Phys. C: Solid State Phys., 9:419-429, 1976.

118
C.-S. Zha, H.-K. Mao, and R.J. Hemley.
Elasticity of mgo and a primary pressure scale to 55 gpa.
Proc. Natl. Acad. Sci., 97:13494-13499, 2000.

119
I. Jackson and H. Niesler.
In High pressure research in geophysics.
Center for Academic Publishing, Tokyo, 1982.

120
M.J. Sanders, M. Leslie, and C.R.A. Catlow.
Interatomic potentials for $sio_{2}$.
J. Chem. Soc. Chem. Commun., pages 1271-1273, 1984.

121
X. Gonze, D.C. Allan, and M.P. Teter.
Dielectric tensor, effective charges, and phonons in $\alpha $-quartz by variational density-functional perturbation theory.
Phys. Rev. Lett., 68:3603-3606, 1992.

122
Ph. Ghosez, J.-P. Michenaud, and X. Gonze.
Dynamical atomic charges: The case of $abo_{3}$ compounds.
Phys. Rev. B, 58:6224-6240, 1998.

123
A.L. Rohl, K. Wright, and J.D. Gale.
Evidence from surface phonons for the (2x1) reconstruction of the (10-14) surface of calcite from computer simulation.
Am. Miner., page in press, 2003.

124
S.L.S. Stipp.
Toward a conceptual model of the calcite surface: Hydration, hydrolysis, and surface potential.
Geochimica Cosmochimica Acta, 63:3121-3131, 1999.

125
E. Dowty.
Phys. Chem. Miner., 14:67, 1987.

126
C.R.A. Catlow.
J. Chem. Soc., Faraday Trans. 2, 85:335, 1989.

127
A.B. Lidiard.
J. Chem. Soc., Faraday Trans. 2, 85:341, 1989.

128
J.D. Gale.
Phil. Mag. B, 73:3, 1996.

129
K. Gallagher, M Sambridge, and G. Drijkoningen.
Geophys. Res. Lett., 18:2177, 1991.

130
K.-P Schröder, J. Sauer, M. Leslie, C.R.A Catlow, and J.M. Thomas.
Chem. Phys. Lett., 188:320, 1992.

131
J.D. Gale and N.J. Henson.
J. Chem. Soc., Faraday Trans., 90:3175, 1994.

132
T.S. Bush, J.D. Gale, C.R.A. Catlow, and P.D. Battle.
J. Mater. Chem., 4:831, 1994.