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Chapter 1

Introduction & background

The General Utility Lattice Program (GULP) is designed tofpen a variety of
tasks based on force field methods. The original code wasewrio facilitate the
fitting of interatomic potentials to both energy surfaced ampirical data. How-
ever, it has expanded now to be a general purpose code fordbeliimg of con-
densed phase problems. While version 1.0 focussed on scoliidsers and embed-
ded defects, the latest version is also capable of handlirfgces, interfaces, and
polymers.

As with any large computer program (and GULP currently rarsidgout 310,000
lines) there is always the possibility of bugs. While evetgmpt is made to ensure
that there aren’t any and to trap incorrect input there candoguarantee that a user
won't find some way of breaking the program. So it is importanbe vigilant and
to think about your answers - remember GIGO! Immature ogiing compilers can
also be a common source of grief. As with most programs, tllecauaccepts no
liability for any errors but will attempt to correct any thate reported.

1.1 Overview of program

The following is intended to act as a brief summary of the bdjiees of GULP to
enable you to decide whether your required task can be peedmwithout having
to read the whole manual. Alternatively it may suggest soewe possibilities for
calculations!

System types
e 0-D (clusters and embedded defects)
e 1-D (polymers)

e 2-D (slabs and surfaces)



3-D (bulk materials)

Energy minimisation

constant pressure / constant volume / unit cell only / igotro
thermal/optical calculations

application of external pressure

user specification of degrees of freedom for relaxation
relaxation of spherical region about a given ion or point
symmetry constrained relaxation

unconstrained relaxation

constraints for fractional coordinates and cell strains
Newton/Raphson, conjugate gradients or Rational Funcyoimisers
BFGS or DFP updating of hessian

limited memory variant of BFGS for large systems

search for minima by genetic algorithms with simulated ating
free energy minimisation with analytic first derivatives

choice of regular or domain decomposition algorithms fatfiterivative cal-
culations

Transition states

location ofn-th order stationary points

mode following

Crystal properties

elastic constants
bulk modulus (Reuss/Voight/Hill conventions)
shear modulus (Reuss/Voight/Hill conventions)

Youngs modulus



e Poisson ratios

e compressibility

e piezoelectric stress and strain constants
e static dielectric constants

¢ high frequency dielectric constants

¢ frequency dependent dielectric constants
e static refractive indices

¢ high frequency refractive indices

e phonon frequencies

e phonon densities of states (total and projected)
e phonon dispersion curves

e Born effective charges

e zero point vibrational energies

¢ heat capacity (constant volume)

e entropy (constant volume)

e Helmholtz free energy

Defect calculations

e vacancies, interstitials and impurities can be treated

explicit relaxation of region 1

implicit relaxation energy for region 2

energy minimisation and transition state calculationgpassible

defect frequencies can be calculated (assuming no couplithda)



Surface calculations

calculation of surface and attachment energies
multiple regions allowed with control over rigid or uncorsshed movement
can be used to simulate grain boundaries

calculation of phonons allowed for region 1

Fitting

empirical fitting to structures, energies and most crystapprties

fit to multiple structures simultaneously

simultaneous relaxation of shell coordinates during fittin

fit to structures by either minimising gradients or displaeats
variation of potential parameters, charges and core/shalige splits
constraints available for fitted parameters

generate initial parameter sets by the genetic algorithmadbsequent refine-
ment

fit to quantum mechanically derived energy hypersurfaces

Structure analysis

calculate bond lengths/distances
calculate bond angles

calculate torsion angles

calculate out of plane distances
calculation of the density and cell volume
electrostatic site potentials

electric field gradients

Structure manipulation

convert centred cell to primitive form

creation of supercells



Electronegativity equalisation method
e use EEM to calculate charges for systems containing H, C,,\¥, @I, Si, P
e use QEq to calculate charges for any element

e new modified scheme for hydrogen within QEq that has corces

Generation of input files for other programs
e GDIS (.gin/.res)
e THBREL/THBPHON/CASCADE (.thb)
e MARVIN (.mvn)
e Insight (.xtl file)
¢ Insight (.arc/.car files)
o G-Vis (.xr)
e Cerius2 (.arc/.xtl/.cssr)
e Materials Studio
e SIESTA (.fdf)
e Molden (.xyz)
e QMPOT (.frc)
e General (.cif/.xml)

e DLV (.str)

Interatomic potentials available

e Buckingham

Four-range Buckingham

Lennard-Jones (with input as A and B)

Lennard-Jones (with input inando format)

Lennard-Jones (with ESFF combination rules)

Morse potential (with or without Coulomb subtract)
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Harmonic (with or without Coulomb subtract)
General potential (Del Re) with energy and gradient shifts
Spline

Spring (core-shell)

Spring with cosh functional form

Coulomb subtract

Coulomb with erfc

Coulomb with short range taper

Inverse Gaussian

Damped dispersion (Tang-Toennies)

Rydberg potential

Covalent exponential form

Breathing shell harmonic

Breathing shell exponential

Coulomb with complementary error function
Coulomb with short range taper
Covalent-exponential

Fermi-Dirac form

Three body potentials - harmonic with or without expondrdecay
Exponential three-body potential

Urey-Bradley three-body potential
Stillinger-Weber two- and three-body potentials
Stillinger-Weber with charge softening
Axilrod-Teller potential

Four-body torsional potential
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¢ Ryckaert-Bellemans cosine expansion for torsional pakent

¢ Out of plane distance potential

e Tsuneyuki Coulomb correction potential

e Squared harmonic

e Embedded atom method for metals (Sutton-Chen potentidigtuers)
e Two-body potentials can be intra- or inter-molecular, othbo

e Two-body potentials can be tapered to zero using cosingnpatial or Voter
forms

¢ Six-body potentials - out of plane to out of plane cross term

Coulomb summations

Ewald sum for 3-D

Parry sum for 2-D

Saunders et al sum for 1-D

Cell multipole method for 0-D

Wolf et al sum for 0-,1-,2-, & 3-D

Molecular dynamics

Shell model (dipolar and breathing) molecular dynamics

Finite mass or adiabatic algorithms

Forward extrapolation of shells added for adiabatic athons

NVE or NVT (Nose-Hoover) or NPT (Variable cell shape)

Monte Carlo
¢ Rigid molecules allowed for
¢ Displacement or rotation of species

e NVT or Grand Canonical ensembles allowed
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1.2 Introduction

The simulation of ionic materials has a long history goingkbaver most of the
last century. It began with lattice energy calculationseoasn experimental crys-
tal structures through the use of Madelung’s constant [h]s Was then expanded
through the inclusion of short-range repulsive interat$ioas found in the work
of Born-Lande and Born-Mayer [2], in order that the crystausture be a mini-
mum with respect to isotropic expansion or compression. fkany simple ionic
materials a reasonable estimate of the lattice energy may les obtained without
knowledge of the structure, as demonstrated by the work puKgnskii [3]. Over
the last few decades atomistic simulation, in which we arg ooncerned with
atoms, rather than electrons and sub-atomic particlesdéasioped significantly
with the widespread use of computers. Correspondingly #ié fias evolved from
one that was initially concerned with reproducing expentaé numbers, to one
where predictions are being made, and insight is beingexter

The widespread use of atomistic simulation for solid staé¢éemals clearly re-
sulted from the availability of computer programs for thekigust as much as the
advent of the hardware to run the calculations. In the eaalysdf solid state
forcefield simulation for ionic materials much of the worktle UK was centred
around the Atomic Energy Authority at Harwell. Consequgmatihumber of com-
puter codes arose from this work, such as HADES [4], MIDAS BLUTO [6],
METAPOCS and CASCADE [7]. Eventually these migrated inte #itademic
domain, leading to the THB suite of codes, including THBRHIHBFIT and
THBPHON from Leslie. Further development of these progréadgo the PARA-
POCS code from Parker and co-workers [8], for free energyimisation of solids
using numerical derivatives, and the DMAREL code from theugr of Price for
the simulation of molecular crystals through the use ofriigted multipoles [9].
There were also several other prominent codes developddroporaneously to the
above family, in particular the WMIN code of Busing [10], tRE€K series of pro-
grams from Williams [11], and the UNISOFT program of Eckeldal [12]. While
the codes mentioned above focus specifically on staticéatind quasiharmonic
approaches to simulation, it should not be forgotten thatettwas a much larger,
parallel, development of forcefield software for perforgnimolecular dynamics
simulation leading to programs such as GROMOS [13], AMBE&,[CHARMM
[15], and DLPOLY [16, 17], to name but a few.

This article focuses on the General Utility Lattice Prognairich began devel-
opment in the early 90’s, and is therefore subsequent to rafitie aforemention
software, but implements many of the same ideas. Howeae tre increasingly
many new, and unique, developments as well. The key philoso@s to try to
bring together many of the facilities required for solidtstaimulation, with partic-
ular emphasis on static lattice/lattice dynamical methoda single package, and
to try to make it as easy to use as possible. Of course, thisagnaand the degree
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of success depends on the perspective of the end user! Ipmriamnt to also men-
tion here the programs METADISE from Parker and co-worke8s[and SHELL
from the group of Allan [19], which are also contemporary slation codes sharing
some of the same ideas.

In this work, the specific aim is to document the very latessiom of GULP,
3.0, which includes many new features over previous vessian well as having
been considerably rewritten. Given that the previous sdeaas version 1.3, the
above use of 3.0 may come as a suprise. However, there waglapeent version
of GULP that included periodic semi-empirical quantum neschal methods from
the MINDO and MNDO family, and this was nominally referredas version 2.0
[20]. Hence the extra increment to avoid any possible coofud=irstly, we detail
the background theory to the underlying methods, some othvis not readily
available in the literature. Secondly, we present a brieiesg of the utilisation of
the code to date, in order to highlight the scope of its presiapplication. Finally,
we present some results illustrating the new capabilitidbelatest version.

1.3 Methods

The starting point for the majority simulation techniqusghe calculation of the

energy, and so will it be for this article. Most methods aredzharound the ini-

tial determination of the internal energy, with subsequesdatment of the nuclear
degrees of freedom in order to determine the appropriatedrergy to the ensem-
ble of interest. In principle, the internal energy of a saich manybody quantity

that explicitly depends upon the positions and momental @@ttrons and nuclei.

However, this is an intractable problem to solve at any levé¢heory, and thus ap-
proximations must be made to simplify the situation. To tadkis we assume that
the effect of the electrons will largely be subsumed into ffecéive atom, and that

the energy can be decomposed into an expansion in termsepatibns between
different subsets of the total number of atoms,

N 1 N N 1 N N N
U= ZUz+§ZZUw+gZZZ Uijk + -

=1 i=17=1 i=175=1k=1
where the first term represents the self energies of the atbmsecond the pairwise
interaction, etc. This decomposition is exact if performed high enough order.
However, we know that the contribution from higher ordenteibecomes progres-
sively smaller for most systems, and so we choose to nediecterms beyond
a certain point and introduce a degree of parameterisafitineoremaining terms
to compensate. Justification for this is forthcoming fronagiwm mechanics. It
is well known that the Hartree-Fock method is a reasonaldedpproximation for
the description of many systems, albeit with a systematmtjtative error for most
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observables. Here the highest term included is a four-eantegral, which indi-

cates that including up to four-body terms should be redserapproach, which is
indeed found to be the case for most organic systems, for gbeariurthermore, it
is intuitively obvious that the further apart two atoms dhes weaker their interac-
tion will be. Thus the introduction of distance cut-offs isa@ural way to simplify

the computational task.

The form of the explicit interaction between atoms is ugsuelosen based on
physical insights as to the nature of the forces betweendhefes. For instance, if
considering a covalent diatomic molecule the natural regmé&ation of the potential
energy surface would be a Morse potential since this is haitrat the minimum
and leads to dissociation at large bond lengths, in accotl sgectroscopic ob-
servation. In the following sections we will review some betcommon types
of potential that are widely used, as well as some novel ggbres which point
towards the future of forcefield methods.

1.3.1 Coulomb interaction

When considering ionic materials, the Coulomb interact®hby far the dominant
term and can represent, typically, up to 90% of the totalgnddespite having the
simplist form, just being given by Coulomb’s law;

UQoulomb _ ﬂ
S 47T€0Tij

it is in fact the most complicated to evaluate for periodisteyns (subsequently
atomic units will be employed and the factor&fe, will be omitted). This is be-
cause the Coulomb energy is given by a conditionally corer@rgeries, i.e. the
Coulomb energy is ill-defined for an infinite 3-D material @s$ certain additional
conditions are specified. The reason for this can be readidierstood - the inter-
action between ions decays as the inverse powey ladit the number of interacting
ions increases with the surface area of a sphere, whichéndiy4rr2. Hence, the
energy density of interaction increases with distancégraihan decaying. One so-
lution to the problem, proposed by Evjen [21], is to sum ov&rge-neutral groups
of atoms. However, by far the most widely employed approacthé method of
Ewald [22] for three-dimensional materials. Here the ctnds of charge neu-
trality and zero dipole moment are imposed to yield a cormetrgeries with a
well-defined limit. To accelerate the evaluation, the Coudaterm is subjected to
a Laplace transformation and then separated into two cosmgenone of which
is rapidly convergent in real space, and a second which degaigkly in recipro-
cal space. Conceptually, this approach can be viewed as@ddid subtracting a
Gaussian charge distribution centred about each ion [283.r€sulting expressions
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for real and reciprocal space, as well as the self-energlyeoian, are given below:

real _ L g~ 45 !
U zizzr—erfc(mnj)

i=1j=1 "1

o 1Y 4 : = (4
[yreciv — 5 Z Z EG: Vﬁ%‘% exp (ZG.mj) %

N 1
Ustf = -3 g2 (ﬁ) 2

i=1 d
Uelectrosmtic — Ureal + Urecip + Uself

Hereq is the charge on an iorfy is a reciprocal lattice vector (where the special
case(G = 0 is excluded)} is the volume of the unit cell, anglis a parameter that
controls the division of work between real and reciprocalc It should also be
noted that although the reciprocal space term is written @gabody interaction
over pairs of atoms, it can be rewritten as a single sum oves for more effi-
cient evaluation. The above still leaves open the choiceitblf radii for real and
reciprocal space. One approach to defining these in a censistshion is to min-
imise the total number of terms to be evaluated in both séoies given specified
accuracyA [24]. This leads to the following expressions:

Nwn3 5
Topt = Vv

o <_1n<A)>%
maxr ’]7

Gae = 207 (—In (A))?

Note that the above expressions contain one differencetineroriginal derivation,
in that a weight parametet;, has been included that represents the relative com-
putational expense of calculating a term in real and recigrgpace. Tuning of
this parameter can lead to significant benefits for largeesyst There have been
several modifications proposed for the basic Ewald summaliat accelerate its
evaluation for large systems, most notably the particlstm{@5], and fast multi-
pole methods [26, 27]. Furthermore, there are competipp@@aches that operate
purely in real space for large unit cells and that scale liyeaith increasing size,
such as the hierarchical fast multipole methods, thougé oarst be taken to ob-
tain the same limiting result by imposing the zero dipoleuregment. This latter
approach can also be applied to accelerating the calcnlafithe Coulomb energy
of finite clusters.
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In principle, it is possible to calculate the Coulomb eneofya system with
a net dipoley, as well. The nature of the correction to the Ewald energylzan
determined as a function of the shape of the crystal, andbtineuia below can also
be employed [28]:
2m
Yaa
However, the complication of using the above correctiorh&t it depends on the
macroscopic dipole of the crystal, and even on any compiagsalectric field due
to the environment surrounding the particle. Hence theldiproment is usually
ill-defined, since it depends on the surfaces, as well asuhlerbaterial. Even if
we neglect surface effects, the definition of the dipole mmineeambiguous since
the operator is not invariant under translation of atomieg®s by a lattice vector.
Consequently, we will take the Ewald result as being detiiti

Similarly, it is possible to relax the charge neutrality strint, and to perform
calculations on charged supercells [29], provided caraksrt when constructing
thermodynamic cycles. This is often used when probing defaergetics as an
alternative to the Mott-Littleton method. Here the net dgea) (Q =X ¢;) is
neutralised by a uniform background charge, leading to &nggrcorrection of:

Udipole _

™

Ubackground - _
2Vn

QQ

So far we have only considered how to handle infinite 3-D solit the same
issues exist for lower dimensionalities. Again for a 2-Dbslthe Coulomb sum
is only conditionally convergent and so an analogous ampréa the Ewald sum
is usually taken, originally devised by Parry [30, 31]. Héhne slab, or surface,
is taken so as to be oriented with the surface vectors in:ghplane and with the
surface normal lying parallel te. The energy contributions in real and reciprocal
space are given by:

1 N N

Ureal = ZZ 445 —erfc (7]27‘2*3')

zl]l ZJ

N

yree 1 N T q;q; exp (1G.r; G 1
p_izz:%: J \G(| ) exp (|G| zi5) er fc ;l |+

i=17=1 Uk




Note, there are now two terms in reciprocal space involvimg 2-D reciprocal
lattice vector,(G, and hered is the surface area of the repeat unit, whilgis the
component of the distance between two ions parallel to thfaseinormal. Again
it is possible to relax the dipolar and charge neutralitystaaints within the repeat
directions. However, the approach to correcting the enesdgr more uncertain,
and it is necessary to make approximations [32]. As per tBecase, the optimum
value of the convergence parameter can also be determigd [3

W
ot =4

Recently, another approach has been proposed for the atoudf the 2-D Coulomb
sum, which is reported to be faster than the Parry methodlf@aaes, and espe-
cially beneficial as the number of atoms increases [34].

Lowering the dimensionality further, we arrive at 1-D pd@io systems which
represents a single polymer strand, for example. At thisdisionality the Coulomb
sum becomes absolutely convergent, though at a very slewwatn performed di-
rectly in real space. Summing over charge neutral unitslaes the process,
though convergence is still somewhat tardy. While thereeHasen several pro-
posed approaches to accelerating the Coulomb sum, we fibhthéhanethod pro-
posed by Saundeet al[35], in which a neutralising background charge is applied,
is effective. Here there are three contributions to thegngiven by:

1+MNN

rea 4iq;
ut=5 X X

—M i=1 j= ITZJ_'_ma

N N
U;eal _ _% Z Z 44 In

i—1j=1 @

(\/(u+x)2+y2+z2+u+x>+

1n<\/(u—x)2+y2+22+u—x) —2111@}

Ué"e‘” ZZ%C]J (M, rij) + &£ (M, —ry)]

11]1

where the first term is summed over all images ahd; in the unit cells from— M
to M, a is the 1-D repeat parameter in thalirection, and the remaining variables
and functions are defined as below:

1
—aM+ =
“ a( +2>

M
E(M,rij) ==> Ea® " Way 4 (U +z,y° + 22)

Wy (u+z,0)= <{%> ((u—l—w)2 +a)7%
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Although the required extent of the summations, given\yto achieve a given
precision is not knowra priori, the method can be implemented in an iterative
fashion so that the degree of convergence is tested as thieenurhlattice repeats
is increased.

One alternative approach to the above methods for perfgrthemCoulomb sum
in any dimensionality is that due to Wadt al[36]. Their approach involves a purely
real space summation that is asymptotic to the Ewald linvéigia suitable choice
of convergence parameters. It is based around the concepsafing that the sum
of the charges of all ions within a spherical cut-off regisregual to zero and that
the potential goes smoothly to zero at that cut-off. Thiscisi@aved by placing an
image of every ion that a given atom interacts with at theafiboundary, but in
the diametrically opposite direction. While this approaelm be applied directly to
the Coulomb potential, convergence is slow. Better resrsobtained by using
a damped form of the potential, which is chosen to be equitatethe real space
component of the Ewald sum, with subtraction of the assediaelf-energy of the
corresponding Gaussian. In this form the expression foetiexgy is:

yWels _ %quiqj <erfc (ary) lim {erfc (ozrl-j)}> B

T’Lj Tij—Tcut TZ]
o [erfelara:) «
g { ol | &
i Tcut w2

where« is the convergence parameter, closely related to the fadiothe Ewald
sum, and-.,; is the cut-off radius. There is a trade-off to be made in thaedof
parameters within this sum. The smaller the valuevpthe closer the converged
value will be to the Ewald limit. However, the cut-off radivsquired to achieve
convergence is also increased. This summation method heas ibglemented
within GULP for 1-D, 2-D and 3-D calculations, though by ddfethe term due
to the limit of the distance approaching the cut-off is ogdtfrom the derivatives
in order to keep them analytically correct at the expenséetass of smoothing.

Before leaving the topic of how Coulomb interactions ard@ated, it is impor-
tant to note the special case of molecular mechanics foldgfielere the Coulomb
interaction, and usually the dispersion one too, is sut#dhfor interactions which
are between neighbours (i.e. bonded or 1-2) and next neaegghbours (i.e.
which have a common bonded atom, 1-3) according to the camitgc This is
done so that the parameters in the two- and three-body paientn be directly
equated with experimentally observable quantities, suchoece constants from
spectroscopy. Furthermore, long-range interactions foma that are 1-4 con-
nected are often scaled, usually by

So far we have discussed the methods for evaluating Coulomis.sHowever,
we have yet to comment on how the atomic charges are detetmimenost simu-
lations, the charges on ions are fixed (i.e. independentaigéry) for simplicity
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and their magnitude is determined parametrically alondpwiher forcefield pa-
rameters, or extracted from quantum mechanical informatio the later situation
there is the question as to what is the appropriate chargakeodince it depends
on how the density matrix is partitioned. Although Mullikanalysis [37] is com-
monly used as a standard, this is not necessarily the opticnamge definition for
use in a forcefield. Arguably a better choice would be to emfte Born effective
charges [38] that describe the response of the ions to atrieléeld, about which
more will be said later. If the charges are purely regardgubaameters then the use
of formal charges is convenient as it removes a degree ofldr@eand maximises
the transferability of the forcefield, especially to chatgkefects.

An alternative to using fixed charges is to allow the chargdsetdetermined as
a function of the geometry. It is well documented that thig@mment dependance
of the charge is very important in some cases. For exampehitiding energy of
water in ice is much greater than that in the water dimer. Hnises due to the
increased ionicity of the O-H bond in the solid state and oailve described cor-
rectly by a simple two-body model. In order to implement aafalle charge scheme,
a simple Hamiltonian is needed that is practical for forddfggmulations. Conse-
guently most approaches to geometry-dependent chargesblean based around
the concept of electronegativity equalisation [39]. Hdre énergy of an atom is
expanded with respect to the chargewhere the first derivative of the energy with
respect to charge is the electronegativityand the second is the hardness,

1 1
U, = Uio + X?Qi + éu?q? + 5%‘/}

The final term in the above expression is the interaction thighCoulomb potential
due to other atoms within the system. By solving the coupétd&equations for
all atoms simultaneously, this leads to a set of chargesb#lance the chemical
potential of the system. There are two variants of this mgth@eneral use. In the
first, typified by the work of Mortier and co-workers [40], t®ulomb interaction,
J, is described by a simplﬂeform. The alternative, as used by Rappe and Goddard
in their QEq method [41], is to use a damped Coulomb potettiet allows for
the fact that at short distances the interaction arises ftwenoverlap of electron
density, rather than from just simple point ions. Hence, Eg@he potential is cal-
culated based on the interactionsobrbitals with appropriate exponents. A further
variant tries to encapsulate the short range damping of théathb interaction in
a mathematically more efficient form [42];
1
ij — I
(s +73°)”
where the pairwise terms;; are typically determined according to combination
rules in order to minimise the number of free parameters:

Yii = /i
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In the case of hydrogen, the variation of charge is so extreeteween the hy-
dride and proton limits that it was necessary to make thereleegativity a func-
tion of the charge itself in the original QEgq scheme. As altesine solution for
the charges now requires an iterative self-consistentgafic Here we propose a
modified formulation from that of Rappe and Goddard that tirally simplifies
the calculation of analytic derivatives:

1 2q 1
Ug =Uy 4+ x%aqu + =0y |1+ —Ig’ ah + =quVy
2 3¢Y 2
The reason for the simplification is based on the Hellmarynfan theorem and
can be understood as follows. If we consider the Cartesianderivatives of the
variable charge energy we arrive at:

dU\ (oU ou dq
(i) = (50), = (50). (5
where the first term represents the conventional fixed cldegeative, and the sec-
ond term is the contribution from the variation in charge dsrection of structure.
However, if the charges at each geometry are chosen so antmise the total
energy of the system, then the first derivative of the inteenargy with respect to
charge is zero and so the correction disappears. Consdyjitemtly becomes nec-

essary to evaluate the first derivatives of the charges wipect to position when
calculating the second derivative matrix.

1.3.2 Dispersion interactions

After the Coulomb energy, the most long-ranged of the eneagyributions is usu-
ally the dispersion term. From quantum theory we know thatftinm of the inter-

action is a series of terms in increasing inverse powersefriteratomic distance,
where even powers are usually the most significant:

Udispersion
]

The first term represents the instanteous dipole - instastdgpole interaction en-
ergy, and the subsequent terms correspond to interactietwgebn higher order
fluctuating moments. Often in simulations only the first teﬁgq, is considered as
the dominant contribution. Again, the dispersion term caase difficulties due
to the slow convergence with respect to a radial cut-off. haligh the series is
absolutely convergent, unlike the Coulomb sum, the fadtahacontributions are

attractive implies that there is no cancellation betweelislof atoms. The problem
can be remedied by using an Ewald-style summation [43] telacate convergence
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for materials where the dispersion term is large:

1 N N

reczp ZZC” (12v) Zexp ZG TZJ)G [Wéerf0< G )"‘

’Ll]l

Urea —liiclj 1+ nr? +7727‘ ex (— 2)
ce 2 r6 n iJ 2 p TITZ]
i=1 j=1
1 N N Czj N 22773

There can also be problems with the dispersion energy at-slwoge since it
tends to negative infinity faster than some expressionshi@répulsion between
atoms, thus leading to collapse of the system. This can loévexby recognising
that the above expansion for the dispersion energy is orilgf fax non-overlapping
systems, and that at short-range the contribution decaysrtoas it becomes part
of the intrinsic correlation energy of the atom. To allow tbis, Tang and Toennies
[44] proposed that the dispersion energy is exponentiaiyged as the distance
tends to zero according to the function:

fon (rij) =1— {% %}GXP (=brij)

k=0

1.3.3 Two-body short-range interactions

Contributions to the energy must be included that repreeninteraction between
atoms when they are bonded, or ions when they are in the inatgedoordination
shells. For the ionic case, a repulsive potential is ususdigquate, with the most
common choices being either a positive term which variesrsely with distance,
or an exponential form. These lead to the Lennard-Jones aoliyham poten-
tials, respectively, when combined with the attractieterm:

Uguckingham AeXp < Tij) . %

Cn _ G

Uﬁfennard— Jones __

T

The Buckingham potential is easier to justify from a theicadtperspective
since the repulsion between overlapping electron dessitige to the Pauli princi-
ple, which take an exponential form at reasonable distatdewever, the Lennard-
Jones potential, where the exponent is typically 9-12, isemmobust since the re-

pulsion increases faster with decreasing distance thaattiaetive dispersion term.

r
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For covalently bonded atoms, it is often preferable to Coudosubtract the
interaction and to describe it with either a harmonic or Mop®tential. In doing
so, the result is a potential where the parameters have gdlysgnificance. For
instance, in the case of the Morse potential the paramesa@be the dissociation
energy of the diatomic species, the equilibrium bond lergith a third term, which
coupled with the dissociation energy, is related to theatibnal frequency for the
stretching mode.

This does not represent an exhaustive list of the forms usel@scribe short-
range interactions, but most other forms are closely rdltaghe above functional
forms, with the exception of the use of a spline function, ehhtonsists of a tab-
ulation of function values versus distance. A full list oktkwo-body potential
functional forms presently available is given in Table 1.1.

1.3.4 Polarisability

The Coulomb interaction introduced previously is just tingt tierm of an expansion
involving moments of the charge density of an atom whichudek the monopole,
dipole, quadrupole, etc. Unlike the monopole term, it isegafly unreasonable to
assume that the dipole moment of an atom is fixed, since betm#gnitude and
direction readily alter within the crystalline environmeccording to the polaris-
ability of the species. There are two approaches to modgitia polarisability that
have been widely used, which we will now introduce.

The first, and most intuitive model is to use a point ion dipplaarisability,«,
which, in the presence of an electric field,, will give rise to a dipole momeni,
and energy of interaction as given below:

p=aVy

o 1
polarisation __ __ — 2
U = —ZaVj

This approach has the advantage that it is readily exterml&dyher order polar-
isabilities, such as quadrupolar, etc [45]. It has beeniag@dioth in the area of
molecular crystals, though often fixed moments are sufficiene [46], and, more
recently, to ionic materials by Wilson, Madden and co-woskgl7]. The only
disadvantage of this approach is that the polarisabiliipdependent of the envi-
ronment, which implies that it is undamped at extreme dle@#lds and can lead
to a polarisation catastrophy. It is well documented that gblarisability of the
oxide ion is very sensitive to its location, since in the ghage the second electron
is unbound and only associates in the solid state due to tldeMag potential [48].
A further complication is that the scheme must involve a-selisistency cycle if
the induced multipoles on one atomic centre are allowedt&raet with those on
another, though in some approaches this is neglected fqiisity.
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Table 1.1: Two-body interatomic potentials currently gadalie within GULP. Here
r represents the interatomic distance of which the potergial function, and;

denotes the atomic charge of the species. All other valueparameters of the
potentials.

| Potential name | Functional form |
Buckingham Aexp( ) <
Lennard-Jones A4 — %
Lennard-Joneg:, o) € (m” )(%) ( )(%)

Lennard-Jonet:, o) zero | e | () (%)m " (2) ( ) (2) o (2)"

Lennard-Jones buffered

(T+T0)m — (r+r0)n
Morse D, [(1 = exp(—a(r—r)))" — 1
Harmonic Tho (1 —10)” + Lhs (r — 10)° + ha (r —1o)"
General/Del Re Ae#r(n‘z) e
Coulomb-subtract qug

) A _r 2 4
Four-range Buckingham exp( ) a0+a1r—|—a2r0+a3r +ayr*+asr?,
b() + bﬂ” + bg’f’ + bg?” 0

Stillinger-Weber 2-body Aexp (T = ff) (r4 1)
Inverse Gaussian —Aexp (—b (r — o) )
Tang-Toennes (%) fs(r) = (%) £s(r) = (98) fr0 (r)
Qtaper (Z4) £ (r) + C (1 — f (r)) wheref (r)is a ta-
per function
Polynomial co 4+ 17 + cor? + e + curt + 51
Qerfc (qij) erfc (p)
Covalent exponential —Dexp (—23"0)
Rydberg —A (1 + B (— — 1)) exp (—B (% — 1))
. . A
Ferml-.D|rac m
Spring Skor? + o kar?
Cosh-spring kod? (cosh (d) 1)
Breathing shell harmonic sk (r — ro)z
Breathing shell exponentia| klexp (p(r —ro)) +exp (—p(r—ro))]
Squared harmonic 1 (r2 —r2)°
Tsuneyuki - form 1 (10s-0102)g(r) Whereg( ) = (1 + (r)exp (—2¢r)

(QIQQ_QU,D)Q(T) Where g (T) —

s T2 r
(14 e 4 95 4 ) oxp (201

Tsuneyuki - form 2
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The second approach to the inclusion of dipolar polariggs via the shell
model first introduced by Dick and Overhauser [49]. Here aps&mmechanical
model is used, whereby an ion is divided into a core, whicheggnts the nucleus
and inner electrons of the ion and therefore has all of thesnagsociated with
it, and a shell, which mimics the valence electrons. AltHoitgs convenient to
think in terms of this physical picture, it should not be takeo literally as in
some situations the shell can carry a positive charge,qudattily for metal cations.
The core and shell are Coulombically screened from eachr,dthécoupled by a
harmonic spring of force constaky,. If the shell charge ig,, then the polarisability
of the ionin vacuis given by;

a

kcs

By convention, the short-range forces are specified to adhershell, while the
Coulomb potential acts on both. Hence, the short-range$oact to damp the po-
larisability by effectively increasing the spring condtaand thus the polarisability
is now environment dependent. The shell model has beenyadelpted within the
ionic materials community, particularly within the UK. Albugh the same issue ex-
ists as for point ion polarisabilities, namely that selfisstency has to be achieved
for the interaction of the dipoles due to the positions ofshells, the problem is
transformed into a coordinate optimisation one. This carsddeed concurrently
with the optimisation of the atomic core positions. The mdisadvantage of this
approach is that is not naturally extensible to higher ordements, though some
attempts have been made, such as the spherical and ellipgeshing shell models.
Furthermore, when performing molecular dynamics specgatment of the shells
must be made by either using an adiabatic approach, in whilshells are opti-
mised at every timestep, or by using a technique analoguotietCar-Parrinello
method [50], in which a fictious mass is assigned to the sbi]l [

As a final note on the topic of polarisability, it is imposglib distinguish from
a phenomenological point of view between on site ion paddios and charge trans-
fer between ions. This may explain why the combination afrfakcharges with the
shell model has been so successful for modelling matehalsare quite covalent,
such as silica polymorphs. Provided the crystal symmetlgvisenough, the shell
model could be viewed as representing charge transfel&owa

o =

1.3.5 Radial interactions

There is a refinement to the conventional point particlelshetlel, which is the so-
called breathing shell model, that introduces non-cemtraforces [52]. Here the
ion is assigned a finite radiu®&,, and then all the short-range repulsion potentials
act upon the radius of the ion, rather than the nuclear posi# radial constraining
potential is then added which represents the self-energlyeobn. Two functional
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forms are most commonly used:

‘ 1
UZBSM—Harmonzc — iKBSM (Rz . R0)2

UZ.BSM*EIPOM"”“Z = KgSM (exp (p(R; — Ro)) + exp (—p (R; — Ry)))

This model has two important consequences. Firstly, itndlthe change of radius
between two different coordination environments to be nlede for example,
octahedral versus tetrahedral. This represents an aliserta using different re-
pulsive parameters in the Buckingham potential by scalegitterm according to
exp (—pet/ poct) 10 correct for this effect. Secondly, the coupling of theulspve
interactions via a common shell radius creates a many-btidgtehat is able to
describe the Cauchy violatiod'(, # Cl4) for rock salt structured materials.

1.3.6 Three-body interactions

There are two physical interpretations for the introductd three-body terms, de-
pending on whether you take a covalent or ionic perspectivihin the former
view, as adopted by molecular mechanics, the three-bodsnpat represents the
repulsion between bond pairs, or even occasionally lonespatience, the form
chosen is usually a harmonic one that penalises deviation the expected angle
for the coordination environment, sutk0°for a trigonal planar carbon atom:

1
Usji = 5/«@ (0 — 6)

At the other end of the spectrum, ionic materials posseggthody forces due to
the three-centre dispersion contribution, particulaeen the more polarisable
anions. This is typically modelled by the Axilrod-Tellerteatial [53]:

(1+ 3cos (eijk;) COs (ejk:i) Cos (ekij))
T?jr?krgk

Uyji = k

As with two-body potentials, there are many variations amdbove themes, such
as coupling the three-body potential to the interatomitagiices, but the physical
reasoning is often the same. A full tabulation of the thredybpotentials is given
in Table 1.2.

1.3.7 Four-body interactions

Specific four-body interactions are usually only includadnolecular mechanics
forcefields where they act to describe torsional angles.cEl¢hne functional form
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Table 1.2: Three-body interatomic potentials currentlgikable in GULP. For po-
tentials with a unique pivot atom, this atom is taken to beratoandd is the angle
between the vectors, andris. All terms other thard, 6123, 0931, 0312, 712, 13, T23

are parameters of the potentia

| Potential name |

Functional form

Three (harmonic)

Lheo (0= 00)" +1ks (0 — 00)° +2ka (0 — 60)"

Three (exponential-harmonig

e

T2
p12

T13
P13

ko (0 — 0)” exp ( ) exp ( )

i T2 _ns a3
Three (exponential) k;exp( o xp( o exp( pgg)
Axilrod-Teller Jo {3 eostFizs] cos(Bam) cos(fs12))
T12773723

Stillinger-Weber 3-body

k exp <T12i152utoff + ) (cos () — cos (6p))”

P13
cuto
T13 77“13 I7

Bcross k(1o —11y) (ris — 1is)
Urey-Bradley Ly (13 — 135)°
—2—(0—m)2)°
ST (g )

Cosine-harmonic

Sk (cos () — cos (60))°

kexp (—pQ1) fum (Q1, Q2, Q)
fum = o+ a@Qr + Q7 + 3 (Q3+Q3) +
c1QF + csQq (Q3 + Q3) +

Murrell-Mottram (co +c10@) (@5 —3Q5Q3) & Qi +
C8Q2 (Qz + Qg) + C9 (Qz + Qg)
Ql — R1+R2+R5 Q _ Q _ 2Ry — \/6 —Rs3
= —ni?f 2R = ”“??f b, - =
BAcross (k1o (r1o — 135) + kg (r13 — 13)) (9 to)
Linear-three-body k(1 + cos (nd))
Bcoscross k(14 bcos™ (nf)) (ria — %) (ris — r%)
Hydrogen-bond (& — ) (cos (0))"
Equatorial (i—?) (1 — cos (n)) + 2K exp (—3 (113 — 19))
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Table 1.3: Four-body interatomic potentials currentlyiealde in GULP. Here the
potential acts on the sequence of atoms 1-2-3-4 (excepthéoout of plane poten-
tial), where the torsion angle lies between the plane containing atoms 1-2-3 and
atoms 2-3-49,,;, is the angle between the vectots andrj;, andd represents the
distance of atom 1 out of the plane of atoms 2-3-4.

| Potential name || Functional form |
Torsional k4 (1 £ cos (ng — ¢o))
Ryckaert-Bellemanng ;E’LZO Cp COS™ @
Out of plane kod? + kyd*
ESFF torsion k1 sin? 0193 sin® fg34 + ko Sin” 0193 sin™ fgsy cos (ne)
Torsional harmonic 1ko (6 — o)’
Torsional exponential| & (1 + cos (ng — ¢g)) exp (_ZITZ) exp (—%) exp (—%i)
Torsional tapered k(14 cos(ng — o)) f (ri2) f(ra3) f (734)
Torsion-angle cross k cos (¢) (6 — 6y) (0' — 6))
Inversion k(1 — cos (o))
Squared inversion sem(iy? (€08 (¢) — cos (ko))

usually involves the cosine of the torsional angle with dasthat reflect the equi-
librium torsional angleg,, and the periodicity with respect to rotation about the
central bond. The most widely used form is therefore:

Uijii = ka (1 +mcos (ng — ¢y))

The other form of torsional potential more occasionallyrfdus one that employs a
harmonic potential to describe the out of plane bending nobd@ecentral atom that
has a planar coordination geometry. This is of utility whesaibing aromatic sys-
tems, and has also been used in the modelling of the carbaniate. An alternative
to this potential is to use so-called improper torsions, igtibe planar geometry is
maintained by specifying a torsional potential betweematthat are not bonded.
A full list of the available functional forms of four-body gential is given in Table
1.3.

1.3.8 Many-body interactions

Some important interactions for particular systems cateotlescribed within the
above forcefield framework. Below we describe a few selebigber order inter-
action potentials that are of significance and that are bewpmore widely used,
despite the greater computational cost.
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Table 1.4: Density functionals available within the Embedidtom Method.

| Functional | Functional form |
Power law f(p)=pn
Banerjea and Smith [54] f (p) = co (1 — 110 (£)) (£)" + 1 (2)
Numerical splined data from data file

Table 1.5: Functional forms for the distance dependendesditomic density avail-
able within the Embedded Atom Method.

| Density | Functional form |
Power law pij = cry”
Exponential pij = crizexp (=d (riy; — 1))
Gaussian pij = CTjs exp (—d (1rij — 7‘0)2)
Cubic pi; = c(rij —10)fOr 145 < 17
Quadratic pij = c(ri; — ro)zfor rij <To
Quartic pi; = c(rij —10) fOr ri; < 17

\oter-Chen cr?j (exp (—P0ri;) + 2% exp (—20r45))

1.3.8.1 The Embedded Atom Method

The Embedded Atom Model (EAM) is an approach that has beeressful in the
description of metallic systems. Its foundations lie witdensity functional theory,
and is based on the tenet that the energy is a function of dutreh density. To
simplify things, the EAM considers that the electron dgnsta superposition of
the atomic densities, and that instead of integrating timsitieacross all space it is
sufficient just to express the energy as a function of theitieasthe nucleus of an
atom, summed over all particles:

Pi)
=1

The above equations encapsulate the idea that the intevdmtitween any given
pair of atoms is dependent on the number of other atoms witi@rcoordination
sphere. Within this generic scheme there are a number dti@ns, based around
different functionals of the density (Table 1.4) and difflet representations of how
the density varies with distance (Table 1.5).

In the original work of Sutton and Chen [55], which developed extended the
ideas of Finnis and Sinclair [56], a square root was usedasdénsity functional,
while the density itself was represented as an inverse pofw@e interatomic dis-
tance. The densities from the paper of Finnis and Sinclait the quadratic and
combined quadratic-cubic form, can both also be used. Omleedbeauties of the
EAM is that, in principle, once the metal is parameterisezhit be studied in other
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environments, such as alloys, without further modificati@n the downside, the
prediction of the relative stability of phases can be sesmsib the cut-off radius
chosen, though if care is taken this problem can be surmdy&@.

1.3.8.2 Bond Order Potentials

Related in many ways to the embedded atom method, but withra sophisticated
formalism, are so-called bond order potentials. It wasgacsed by Abell [58] that
the local binding energy could be expressed as follows:

N i—1
[JBO — Z Z [Urepulsive (T‘Zj ) . Bij [attractive (T‘ij)]
i=2 j=1

wherebB;; is the bond order between the atoiahd;. The bond order is dependent
on the local environment of both atoms and thereby converepparent two-body
interaction into a many-body one. Several different foratioins have been pro-
posed, most notably by Tersoff [59, 60], and also more régdat Pettifor and
co-workers [61], where the latter use a more extensive amsabf the contributions
to the bond order and appeal to first principles methods taeithe parameters.
One particular model has had an enormous impact in recens ge@ to its appli-
cability to carbon polymorphs and hydrocarbon systemg, dha to Brenner and
co-workers [62]. Unsurprisingly, it has been extensivglpléed to fullerenes, nan-
otubes and diamond, as systems of topical interest. Oneafttter reasons for the
popularity of the model is the fact that Brenner makes hisedoekely available. An
independent implementation of the Brenner model has beeate méthin GULP,
since the capabilities of the program require that analjgicvatives to at least sec-
ond order, and preferably third, are present, which is netdase for the existing
code. To date, there exist three published variants of teaiir potentials, but we
have implemented just the latest of these models since érsapds the previous
two [63].

The terms in the expression for the energy in the Brenner irevéeexpressed
as follows:

[repulsive (r)=Af°(r) (1 + g) exp (—ar)
) 3
Uattractwe (7‘) — fc (7‘) Z Bn exp (_ﬁnr)
n=1
where A, @, a, B;_3, and3;_3 are parameterised constants that depend on the

atomic species, C or H, involved arfd (r) is a cosine tapering function to ensure
that the potential goes smoothly to zero of the form:

1 r o< pmin
(r)= L1+ cos F,;:i mi)n T P < < pmat
2 (r rman)
0 r > e
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The bond order term itself is composed of several terms;

By = % (b +057) + % (T3¢ + b5™)

Note that the above expression fBy; differs from the one given in the defining
manuscript due to the factor of a half for the second termjdrequired to obtain

results that agree with those quoted. The first two terms énaibove equation
represent the influence of local bond lengths and anglestdbeltatoms i and j,

respectively, while the third term is a correction for raaicharacter, and the fourth
one for the influence of dihedral angles. Both of the last vt are related to the
degree of conjugation present. Full defining equationsHesé terms, along with
the parameters, can be found in the original reference anduhsequent errata.

In the above many-body contributions to the bond order, licand tricubic
splines are used to interpolate parameter values. For 8ighdited Brenner po-
tential code, the spline coefficients are precomputed apdl®d as data files. In
the present implementation the splines are performednatigron the fly. This has
two advantages in that it both avoids possible transcmpgiors, as well as loss
of precision through 1/0, and allows for the possibility adirpmeter fitting to be
readily implemented.

Because of the short-ranged nature of the Brenner potemg@ahave imple-
mented two different algorithms for the evaluation of théemactions. The first
involves a conventional search over all atoms to find neighbavith a non-zero
interaction. The second uses a spatial decomposition asytbieem into cubes of
side length equal to the maximum range of the potential. €gmantly only atoms
within neighbouring cubes can possibly interact. This eta linear scaling al-
gorithm that is far more efficient for large systems. A conmgan is presented in
the results section.

While the Brenner model does have many strengths, such ability to de-
scribe bond dissociation, there are also a few limitatioRerhaps the most sig-
nificant is the difficulty in describing long-range forcesorknstance, there is no
bonding between the sheets for graphite. There have beembanwof remedies
proposed, including adding on two-body potentials to dbsahese effects, either
only between different molecules, or with a tapering thatoges the interaction at
short-range so as not to invalidate the parameterisatiomeder, there are limita-
tions to these approaches, though a more sophisticatedssipn for removing the
contribution of long-range forces where the existing iattions due to the Brenner
potential are significant shows promise [64]. As yet, thistibto be implemented.

1.3.9 One-body interactions

Going to the other extreme of complexity from many-bodyiattions, we have the
simplist possible atomistic model, namely the Einstein ed¢@5]. This approach
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deviates from those that have gone before in that there isiteoaiction between
particles and all atoms are simply tethered to their latioe by harmonic springs:

[y Binstein _ %g: ks <($Z _ x?)Q + (yi _ y?)Q + (Zi - Z?)z)
i=1

This model acts as a reference state since all interacti@nguaely harmonic and
consequently the phonon density of states, and also thetwtey are independent
of temperature. This implies that all the quantities that ba derived from the
vibrational partition function can be analytically detened for any temperature
without approximation, unlike other potential models. B\ estructure that con-
sistents of atoms coupled together by a series of harmonenpals has implied
anharmonicity that arises from the derivatives of the tramsation matrix from
the bond-oriented pairwise frame of reference to the Ciamesne.

Given that the results of the Einstein model can be derivédout recourse to a
structural description, there is no need to employ an atiersgnulation program
in order to calculate the required quantities. Howeverait be useful to combine
the Einstein model with a conventional, more accurate,esgmtation of the in-
teractions for use in thermodynamic integration [66]. ®itice free energy of the
Einstein crystal is known under any conditions, it is pokestb extract free ener-
gies from molecular dynamics via a series of perturbativestin which the Einstein
model is introduced to an anharmonic potential in a seriestes, as a function
of a switching parameteA, in order to obtain the difference relative to the known
value.

It is worth highlighting the differences between the Einstaodel and all others
within the program. Because of the lack of interatomic iat#ions, there can be
no optimisation of the structure and no strain related priigee calculated. For
the same reason, there is no phonon dispersion across flmuBrizone. Finally,
because the particles are tethered to lattice sites thaetignslational invariance,
and consequently all vibrational frequencies are postive non-zero (assuming
all force constants are specified to be likewise).

1.3.10 Potential truncation

As previously mentioned, all potentials must have a finitegein order to be cal-
culable. However, there are a range of conditions for a piateto act between
two species, as well as various methods for handling thee&tion of potentials.
Hence, it is appropriate to describe a few of these issues her

1.3.10.1 Radial truncation

The natural way to truncate a potential is through the use gjpleerical cut-off
radius. It is also possible to specify a minimum radius frotmick the potential
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should act too. Hence, it is possible to create multipleadis¢ ranges within a
potential with different forcefield parameters, as well@sverlay different poten-
tials. Of course, where there is a cut-off boundary, thelélva a discontinuity in
the energy for most interaction terms, unless the potestraothly tends to zero
at that distance by design. This can lead to problems duneggg minimisation,
since the point of lowest energy may not be a point of zeroegf@igymore, and in
other simulation techniques, such as molecular dynamihsyevenergy conserva-
tion will be affected by discontinuities. Other than inseey the cut-off radius,
there are several approaches to minimising these diffesutis described briefly in
the subsequent subsections.

1.3.10.2 Cut and shift

To avoid a discontinuity in the energy at the potential cifit-®@ constant shift can
be added to the potential so that the energy at the cut-ofideny becomes zero:

U (i) = Uy (i) — Usj (Feu)

wherer,,; is the cut-off radius. However, the gradient is still distonous at the
cut-off distance, so the procedure can be extended by addimgar term in the
distance such that the gradient is also zero at this pointiléNth principle this
method can be applied to make any order of derivative go Bxaxizero at the
boundary by construction, the increasing powers of distdead to the correction
terms modifying the variation of the potential with distanmore strongly as the
order rises. This characteristic, that the potential is iinedl away from the point
of cut-off, makes this method of smoothing less desiralde gome.

1.3.10.3 Tapering

In this approach, the potential is multiplied by a smoothetdjpinction that goes
to zero, both for its value and its derivatives typically wpsecond order. This
is usually applied over a short range from an inner radiyg,,, to the cut-off
distance:

Uij (TU ) Tij < Ttaper
Uij (Tij> ftaper (rij) Ttaper < Tij < Teut
0 Tij > Teut

Hence, withinr,,., the potential is unchanged. There are numerous possible
functional forms that satisfy the required criteria for @eafunction. Perhaps the
two most commonly used are a fifth order polynomial or a cofimetion with a
half a wavelength equal tQ,; — r,.-. Both of these are available within GULP as
part of the overall two-body potential cut-off.
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1.3.10.4 Molecular mechanics

In the simulation of molecular systems, it is often prefégaio use a molecular
mechanics forcefield. This implies that certain cut-ofis determined by connec-
tivity, rather than by distance alone. For example, paldicpotentials may only act
between those atoms that are bonded, such as a harmonictors@ant, whereas
others may specifically only act between those that arewalemtly linked. Fun-
damental to this is the notion of a bond between atoms. WBUHLP these can
either be determined automatically by comparing distabe¢seen pairs of atoms
with the sum of the covalent radii, multiplied by a suitaldketance factor, or alter-
natively the connectivity can be user specified. From tH@rmation, it is possible
for the program to determine the number of molecules andhercase of periodic
systems, their dimensionality.

A number of options are possible that control how both thepials and the
Coulomb terms act, as described below:

e Bonded A potential may act only between atoms that are bonded .(1-2)

e Exclude 1-2 The case of bonded atoms is specifically omitted from the al-
lowed interactions.

e Exclude 1-3 Interactions between bonded atoms and those with a common
bonded atom are excluded.

e Only 1-4 A potentials only act between atoms that are three bondg.apa
This can be useful in the description of torsional intexacsi

¢ Intramolecular Only interactions within a given molecule are permitted fo
the potential.

¢ Intermolecular Only interactions between atoms of different molecules ar
allowed.

e Molecular Coulomb subtractiorAll electrostatic interactions between atoms
within the same molecule are excluded. This implies thattieges on the
atoms within a molecule purely serve to describe its intgwacwith other
molecules.

e Molecular mechanics Coulomb treatmeithis implies that Coulomb terms
are excluded for all 1-2 and 1-3 interactions. In additidnsisometimes
desirable to remove, or scale down, 1-4 electrostatic &cteons too. The
benefit of this is that the parameters of the intramolecubéeiptials then have
a direct correspondance with the equilibrium bond lengblesid angles and
localised vibrational frequencies. It should be noted tvatbody potentials
can also be scaled for the 1-4 interaction, if so desired.
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1.3.11 Partial occupancy

Many materials have complex structures which include disoof one form or an-
other. This can typically consist of partial occupancy vehtrere are more symme-
try degenerate sites than there are ions to occupy them, erevthere are mixtures
of ions that share the same structural position. In primgighie only way to accu-
rately model such systems is to construct a supercell of theemal containing a
composition consistent with the required stoichiometrg #ren to search through
configuration space for the most stable local minima, assgrthe system is in
thermodynamic equilibrium (which may not always be the ga$ais includes al-
lowing for the contribution from the configurational entyofo the relative stability.
While this approach has been taken for several situationst notably some of the
disordered polymorphs of alumina [67, 68], it is demandiegduse of the shear
number of possibilities which increases with a factorigbeledance.

There is an approximate approach to the handling of dispvet@ch is to intro-
duce a mean-field approach. Here all atoms are assigned apavwy factorp;,
where0 < o; < 1, and all interactions are then scaled by the product of tlegaeat
occupancies:

Um_f = OinUij

1

m—f
U’jk: == OinOk'Uijk

7

and so on for high order terms. This approach can be utiliseahny atomistic
simulation program by scaling all the relevant potentialapaeters according to
the above rules. However, for complex forcefields this canel@us, and it also
precludes fitting to multiple structures where the occupsmof ions of the same
species are different. Hence, the inclusion of partial penicies has been auto-
mated in GULP so that only the site occupancies have to befigoeand every-
thing else is handled by the program. This includes the apdinconstraints so
that atoms that share the same site move together as a sangjldgy as well as
checking that the sum of the occupancies at any given siteotlexcteed one. It
should be noted that the handling of partial occupanciesires| particular care in
determining phonons where the matrix elements for all cedi@pecies must be
condensed in order to obtain the correct number of modes.

The use of a mean field model is clearly an approximation. foctures, it can
often work quite well, since crystallography returns anrage anyway. However,
for other quantities, such as thermodynamic data it hagdimns. For example,
the excess enthalpy of mixing of two phases is typically esgmated since the
stabilisation that arises from local structural distansdo accommodate particular
species is omitted [69].

34



1.3.12 Structural optimisation

Having defined the internal energy of a system, the first tadletperformed is to
find the minimum energy structure for the present materia.b@& more precise,
this will typically be a local minimum on the global poteritenergy surface that
the starting coordinates lie closest to. Trying to locaedlobal energy minimum
is a far more challenging task and one that has no guaran®ecoéss, except for
the simplist possible cases. There are several approachsssatching for global
minima, including simulated annealing [70], via either Mente Carlo or molec-
ular dynamics methods, and genetic algorithms [71, 72].eHeg will focus the
guest for a local minimum.

At any given point in configuration space, the internal egiengy be expanded
as a Taylor series:

1 2
U(x+dz)=U(z)+ g—[x]éx + 5% (6)% + ...
where the first derivatives can be collectively written as ¢inadient vectorg, and
the second derivative matrix is referred to as the Hessianxma/. This expan-
sion is usually truncated at either first or second ordegestiose to the minimum
energy configuration we know that the system will behave loaiinally.

If the expansion is truncated at first order then the minitiosgjust involves
calculating the energy and first derivatives, where thetaite used to determine
the direction of movement and a line search is used to deterthe magnitude of
the step length. In the method of steepest descents thieggas then repeated
until convergence. However, this is known to be an inefficgtrategy since all the
previous information gained about the energy hypersuriaagnored. Hence it is
far more efficient to use the so-called conjugate gradidgtwighm [73] where sub-
sequent steps are made orthogonal to the previous seartdrsieEor a quadratic
energy surface, this will converge to the minimum in a nundjesteps equal to the
number of variablesyV.

If we expand the energy to second order, and thereby use aoNdRaphson
procedure, then the displacement vectar, from the current position to the mini-
mum is given by the expression:

Az =—H g

which is exact for a harmonic energy surface (i.e. if we knbe inverse Hessian
matrix and gradient vector at any given point then we can gbeganinimum in one
step). For a realistic energy surface, and starting awan tiee region close to the
minimum, then the above expression becomes increasinghpzainate. Further-
more, there is the danger that if the energy surface is ctoserne other stationary
point, such as a transition state, then simply applyingfdrisiula iteratively may
lead to a maximum, rather than the minimum. Consequentyy,ettpression is
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modifed to be
Az = —aH g

where« is a scalar quantity which is determined by performing a §earch along
the search direction to find the one-dimensional minimum tedprocedure be-
comes iterative again, as per conjugate gradients.

By far, the most expensive step of the Newton-Raphson metbaxdicularly
once the size of the system increases, is the inversion diéissian. Furthermore,
the Hessian may only vary slowly from one step to the nexs therefore wasteful
and undesirable to invert this matrix at every step of thénoigtition. This can be
avoided through the use of updating formulae that use thegghia the gradient and
variables between cycles to modify the inverse Hessian ghatht approaches the
exact matrix. Two of the most widely employed updating scegmre those due to
Davidon-Fletcher-Powell (DFP) [74] and Broyden-Fleteaidfarb-Shanno [75],
which are given below:

HDEP _ gDFP 4 ATQAT (HP1" Ag) @ (HP. Ag)

i+1 Al’Ag Ag.HZ-DFP.Ag
BFGS BFGS
HBFGS _ gBFGS | Az ®@ Az _ (Hi -Ag) ® (HZ .Ag) N
i+1 % AIAg AgHZBFGSAg
80,5755 2| v 0
Az HPFGS Ag

(Y

T Az Ag  Ag.HBFGSAg

The BFGS algorithm is generally recognised as the more efficone and so is
the default optimiser. However, if performing a transitistate search then DFP
is preferred due to the different tendances of the updat#sregard to targetting

a positive definite character for the Hessian. The pracaggroach taken in a
BFGS optimisation is to initialise the Hessian by perforghemn exact inversion

of the second derivatives and then subsequently updating fmmber of cycles.

Occassionally it is necessary to calculate the exact iBvlisssian again. This is
triggered by one of a number of possible situations:

e The maximum number of cycles for updating is exceeded

e The angle between the gradient vector and the search veatee@s a given
threshold

e The energy has dropped by more than a certain threshold icyare, so the
curvature is likely to have altered

e The energy cannot be lowered by line minimisation along tiveenit search
vector
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There is one variation upon the BFGS strategy above, in whather than calcu-
lating the exact second derivative matrix and invertinghg Hessian is initialised
approximately and then updated such that it tends to theHessian. Two possible
starting approximations to the Hessian are either to uséanatrix or to perform a
finite difference estimate of the on-diagonal elements onbrder to achieve better
preconditioning. By taking this approach the cost is sintileconjugate gradients,
though with a higher memory requirement, but the convergéntypically twice as
fast since more information from previous energy/gradesaiuations is retained.

The choice of appropriate algorithm for minimisation degieon the size of the
system and number of variables. For small systems, the NeR&phson methods
that use second derivatives will be far more efficient. As glee of system in-
creases, the computational cost of building and invertiegtessian matrix will ul-
timately grow asV? while the memory requirements also increaséVgsV + 1) /2
for lower-half triangular storage. Hence, ultimately itiMbecome necessary to
use first the unit Hessian approach and then ultimately th@igate gradients or
limited memory BFGS method &s continues to increase. This balance may also
be influenced by the use of symmetry, where possible, as witlibcussed later.
A further issue is that for minimisation where the initiatugtture lies outside the
harmonic region, Newton-Raphson methods may not be phatigladvantageous,
whereas they will be as convergence is approached. Henc®@idludes the facil-
ity to change the minimiser from, for example, conjugatedgrats, to BFGS when
a criterion is met, such as the gradient norm falling belowecsied threshold.

Aside from the minimisation algorithm itself, somethingosid be said about
the criteria for convergence of an optimisation. Typicatyme or all of the follow-
ing can be checked for convergence:

the gradient norm (root mean square gradient per variable)

the maximum individual gradient component

the norm of the estimated displacement vector

the change in the function (energy, enthalpy or free endvgyveen succes-
sive cycles

¢ the change in the variables between successive cycles

Normally all of these quantities are well converged (an@fxcessively so - i.e.
well beyond chemical accuracy) with Newton-Raphson ogaton for a force-
field. Occassionally convergence is not achieved, whicle&slg always indicative
of a significant discontinuity in the energy surface, suchhad caused by inter-
atomic potential cut-offs. Ideally all potentials shoukdthpered so that their value,
first and second derivatives go smoothly to zero at the dutaglius. In practice,
most repulsive potentials are negligibly small by a typicat-off distance of 10
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Angstroms and so it is usually the attractive potential$ thenic dispersion that
are responsible. The other common cause are discontiguntieonding - i.e. an
atom is displaced beyond a bond cut-off during minimisatma so the whole
nature of the interaction potential changes. While this lbarmvercome by main-
taining a fixed connectivity list, the real issue is that tbecéfield is inadequate for
the system being modelled.

All of the above discussion has related to the search fora lonimum where
the first derivatives are zero and the second derivativeimtipositive definite.
However, there are many instances in which it is necessdogéte other stationary
points on the potential energy surface, and in particutardition states, such as for
ion diffusion. There are a number of algorithms availablelézating transition
states, of which the most widely used class in solid statenigditions tend to be
constrained minimisations. Here the reaction path is dis®d in some way and
the system minimised so that the variable changes are atiabdgo the direction
of the pathway. Arguably the most successful and widely wsgaroach is the
Nudged Elastic Band method [76]. However, the disadvantggese constrained
techniques is that some assumption usually has to be madé thieanature of the
mechanism before the calculations are performed. In cshytitaere are algorithms
which use Newton-Raphson techniques in order to locat®staly points with an
arbitrary number of negative eigenvalues for the Hessidre(e/a transition state is
the special case of a single negative eigenvalue). In the@aSULP, the method
implemented is so-called Rational Functional Optimisa{lRFO) [77].

In the RFO method, the inverse Hessian matrix is diagordliseobtain the
eigenvalues and eigenvectors. From the eigenvalues isslpe to examine whether
the matrix has the required characteristics for the statyppoint being sought. If
the number of negative eigenvalues is incorrect, then tetsym is level-shifted to
correct this and the search direction constructed appatedyi By default, the Hes-
sian modes with the smallest eigenvalues are followed wsvtre corresponding
stationary point. However, eigenvector following can absoperformed in which
different modes from the spectrum are selected. Hence ti@ &iimiser will,
in principle, locate various possible transition stateststg from a given position.
There are a few provisos though, most notably that there st non-zero pro-
jection of the gradient vector in the search direction lagdp the stationary point.
Furthermore, the step size must be quite small in order tarersonvergence to a
transition state. Since the line search can no longer be tisedptimisation relies
on a fixed proportion of the search vector to achieve convergeln the implemen-
tation in GULP, this step magnitude is correlated to the gratchorm, so that as the
calculation approaches convergence, and therefore ghefrgarmonic region, the
proportion of the search vector used approaches 100%. &fegpdating can also
be applied while optimising towards a transition state. ldegr, because the rate of
convergence depends more critically on the inverse Hedmarg accurate, more
frequent exact calculations are usually required. RFO tsmlze used to accelerate
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optimisations to minima once the harmonic region is apgredg since it is able
to better handle soft modes. In extreme cases, the numbegclafscis reduced by
an order of magnitude by use of RFO towards the end of an ogdition, as well
confirming that the Hessian has the required structure. A finte of caution is
that this method does not guarantee that a local minimum éas achieved, even
if the Hessian is confirmed as having all positive eigenwalukhis is because the
Hessian only spans the space of the allowed optimisatiaablas and there may
be directions of negative curvature with respect to constchdegrees of freedom.
Hence, d-point phonon calculation should always be used as a finalatabn.

Often it is desirable to apply external forces to a systemnwvperforming a
minimisation. The most common example is the applicaticanagotropic external
pressure, such as used in the determination of the equdtstate for a material.
This situation can be straightforwardly handled by making objective function
for minimisation the enthalpy instead of the internal egyerg

H=U+pV

More complex is the case when an external force is to be appdiendividual
atoms. This arises when the program is being coupled to aratepguantum
mechanical calculation as part of a QM/MM method (i.e. a quienmechan-
ics/molecular mechanics coupled calculation). Here theef® on the forcefield
atoms arise from the quantum mechanical region, which iserplicitly consid-
ered in the present calculation. Adding the negative of ttteraal forces to the
internal derivatives is simple to implement. However, fanmisation the inter-
nal energy is no longer a well-behaved objective functioe. (ithe minimum of
the internal energy does not correspond to a configuratiaef gradients). One
solution to this would be to minimise the gradient norm iaslebut this requires
either one order higher of energy derivatives or that coajagradients are used to
minimise, which is less efficient.

The approach implemented within GULP to handle the apptinatf external
forces is to define a new additional term in the internal ependnich is the work
due to the external force:

Ue:cternal — /final Fexternal'oé
initial

wherea represents the vector of atomic coordinates arti“ "+ is the vector of
external forces. With this correction to the internal elyetbe minimum coincides
with force balance and so the full range of standard minirsiaee applicable. How-
ever, the final energy is an arbitrary quantity unless takih rgspect to a standard
reference set of atomic positions.

The framework of structural optimisation in GULP is designe be flexible and
to allow the user as much freedom as possible to control tgeeds of freedom.
Intrinsically, there are four main classes of variablessgae within the forcefield
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models available, namely, atomic coordinates, the unitpeiodicity (for poly-
mers, surfaces, and bulk materials), shell coordinated, meathing shell radii.
Each variable can be controlled by optionally specifyingreaby flag that indicates
whether it is to be varied or held fixed. Alternatively there keywords that select
default settings of the flags, such that those quantitiesomgtrained by symmetry
are allowed to vary. In particular, the defaults automaéiydzandle the fact that one
atom must be fixed in order to remove the three translatioegteks of freedom.
For bulk systems, the first atom is usually the one chosen tfixbd, since the
choice is arbitrary. In the case of slab calculations, tloenahearest the centre of
the slab is fixed since this is the one least likely to move bylsstantial amount.
When there is a centre of symmetry in the space group, thea ih@o need to fix
any atoms since the origin is already immoveable. The diefgiimisation options
also automatically construct the constraints necessapyeserve the space group
symmetry as the atoms are displaced.

When minimising periodic systems there are a couple of @wilcat have to be
made. The first concerns the representation of the unit ¢élis can be achieved
through either the unit cell parameters,b, ¢, a, 3, 7, or via the Cartesian cell
vectors as a (3x3) matrix. Correspondly, when optimisirguhit cell this can be
done with respect to the cell parameters directly, the Gatecell vectors or by
using a strain tensor. Here we chose to use the Voight steaisot to scale the
Cartesian lattice vectors:

1 1
1+ €1 566 565
1 1
566 1+ €9 564
1 1
565 564 1+ €3

Through using the six Voight strains as the variables, weslihg same advan-
tage as working with the unit cell parameters in that celation is eliminated by
construction. However, as will be demonstrated later, tévdtives with respect
to strain are closely related to the Cartesian internalvdévies and therefore read-
ily calculated at almost no extra cost. We should note thamdtrain derivatives
are taken, they are done so with respect to infinitesimainsthout the current
configuration, rather than with respect to a single constierence cell. For 2-D
systems, the strain tensor is correspondingly reduced2r? (matrix and for poly-
mers there is a single scalar strain value. At this point waukhalso comment on
the absolute spatial orientation of systems, since thistéeemaf convention, rather
than an absolute choice. For 3-D systems, GULP orients tiedl vector along the
x-axis, theb cell vector in thery-plane, and then the orientation of theell vector
is fixed, except for an issue of chirality, which is resolvgdselecting the orienta-
tion that has a positive dot product with thexis. For 2-D systems, the same two
conventions are followed for the surface vectors, whiclvésahe surface normal
parallel to thez-axis. Finally, for 1-D systems, the repeat direction isstako lie
along thez-axis.
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1.3.13 Genetic algorithms

The approach to minimisation of a structure has already besussed when con-
sidering the case of a local stationary point. Now we turniasider the quest for a
global minimum. In order to do this, a technique is requiteak @allows barriers to
be overcome in some way. While hyperdynamic [78]and ba#lingfiapproaches
are becoming increasingly useful, the more traditionarapph has been to employ
methods that incorporate random changes in the structureastiendancy to min-
imise a so-called cost function. Here the cost function isangjty that represents a
measure of the quality of the structure. In the most obvi@secthis might be just
the total energy of the system. However, because stoclastiesses require many
moves, it is often convenient to use a more computation#ilgient cost function.
For example, one form that has previously been successfabig for oxides is a
combination of bond-valence sum rules with a short-rangedl@nb penalty that
prevents ions of like charge approaching each other [79].

There are two main approaches to the global optimisatiortrat®res via a
random walk - the Monte Carlo method [80] and Genetic Aldons (GAs) [71,
79]. Although both are in principle equally capable of peniiong the task, it could
be argued that genetic algorithms are more naturally stitedarse grained global
optimisation, while the Monte Carlo technique is also ablgield an integration
within the phase space of a statistical ensemble. Here wearkentrate on the
use of GAs.

In the genetic algorithm, each optimisation variable i€dtised within a spec-
ified range. This is particularly well suited to fractionaladinates where there are
natural bounds of 0 and 1. Then all that need be specified isutmder of allowed
intervals within the range. If a coarse grid of points is sfied then configura-
tion space will be rapidly searched, but the solution wilMesy approximate and
the global minimum may not be resolvable with the level obltagon available.
Conversely, if a fine grid is utilised then the search is cépalb locating a more
accurate estimate of the global minimum. However, becatdedarge number of
possible configurations, the optimal state may never b&edsClearly a hierarchi-
cal approach may be ideal, where a coarse discretisatiantially used and then
refined as the process progresses. The state of each cotibgusaepresented by
a binary number which is a concatination of the binary repméstions of the grid
point numbers for each individual variable.

The fundamental idea behind genetic algorithms is to perfarprocess that
mimics natural selection through survival of the fittest.réithe concept of fitness
equates to the value of the chosen cost function. Each cythe &A begins with
an even number of so-called parents. In the first step thestyically randomly
chosen initial configurations. These parents then are rahdpaired up in order to
breed to produce two children in order to maintain the sizéefpopulation. This is
the tournament phase, in which a probability is set for thrempiawith the lower cost
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function to go through to the next generation and to form thiédoen. A random
number is chosen and compared to this probability in ordenade the decision.
Choosing this probability threshold is a balance betweemtiwg to ensure that the
better configurations survive against trying to maintawvedsity in the population
during the initial stages. More sophisticated tournameot@dures have also been
proposed where an exponential weighting is used in favothefitter candidates.
Usually the number of children is set equal to the number oémqa in order to
maintain a stable population size.

Apart from the tournament phase, there are two other presg$sit can occur,
which are mutation and crossover. In the mutation phasep@euof binary digits
are changed from 0 to 1 asice versa Again the chance of this occuring is de-
termined by comparison of a random number to the mutatiobadyity. During
crossover, two configurations are selected, the binanyggrsplit at a random point,
and the two parts switched between configurations. Both toatand crossover
represent genetic defects that are designed to introdadenaness with the aim of
exploring configuration space.

The above three genetic algorithm steps are applied refigatgth the aim
of gradually reducing the cost functions of the populatiowvd and focussing in
on the global minimum. When the procedure is stopped afesgiecified num-
ber of steps, then hopefully the configuration with the lowsest function will be
the global minimum, though this can never been known foraoerfor complex
systems. If the cost function used was an approximationeéddtal energy that
is ultimately desired to be the criterion for selection,riteeselection of the best
configurations can be subsequently minimised accordindgpeatdtal energy and
hopefully the global minimum will lie amongst this set, ewough it is not the
structure with the absolutely lowest cost function.

There are several possible refinements to the genetic gigoprocedure, which,
somewhat appropriately, is itself still evolving. Howevtire above basic formu-
lation is capable of correctly predicting the atomic cooades of binary, and even
some ternary oxides, given the unit cell. Indeed, the mettaatian early success
through assisting in the solution of the previously unknastnucture ofLiz RuO,
[72]. More details of the background to, and applicationtb& genetic algorithm
for solid state structural optimisation can be found elsentj79].

1.3.14 Calculation of bulk properties

Having determined the optimised structure for a materied then possible to cal-
culate a wide range of physical properties based on the tuevaf the energy

surface about the minimum. These include both mechanioglgties, such as the
bulk modulus and elastic constants, as well as dielectopgnties. The expres-
sions used for the calculation of the individual propertiest may be determined
routinely from the second derivative matrix are detailetbiae
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1.3.14.1 Elastic constants

The elastic constants represent the second derivativdseoériergy density with
respect to strain:
1 [ 0°U
Cii = —
%4 8@86]-

thereby describing the mechanical hardness of the matettatespect to deforma-
tion. Since there are 6 possible strains within the notatidreme we employ, the
elastic constant tensor is a 6 x 6 symmetric matrix. The 2&rmatlly independent
matrix elements are usually reduced considerably by symyn&t]. For example,
for a cubic material the only unique elements akg, C4,, andCy. The calcula-
tion of elastic constants is potentially very useful, sitreefull tensor has only been
measured experimentally for a very small percentage ofradik solids. This is
primarily because the practical determination typicaflguires single crystals with
a size of a few micrometres at least.

In calculating the second derivatives of the energy wittpees to strain it is
important to allow for the response of all internal degreeseeedom of the crystal
to the perturbation. If we introduce the following notatimn the second derivative

matrices: o2
U
Dee = < )
6686 internal
0*U
Dei -
<8e@0¢i ) .

0*U
Py = (‘9%‘3@ ) )

then the full expression for the elastic constant tensoheawritten as:

1 -1
The elastic compliances, can be readily calculated from the above expression by
inverting the matrix (i.e.S = C~!). The above expressions are valid for adiabatic
conditions and at zero pressure. The adiabatic elastidaotsscan be extended to
the case of finite external pressure according to the coorest

1 0*U P
Copre=—=|=——— = (20080~¢ — 0acOpy — Oand
B¢ V<a€aﬁa€%>+2( 804¢ = Ga¢dpy — GayOpc)
Here the strains are expressed directly in terms of the €artecomponents, as
opposed to in the Voight notation, so as to make the cornestioore transparent.
Under isothermal conditions the expressions for the easinstant tensor are
analogus, except for the fact that the differentials aré wespect to the Helmholtz
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free energy, rather than the internal energy. Because Hiaaion of the isothermal
elastic constants requires the fourth derivative of therimal energy with respect to
internal coordinates and strains, this is not presentlyleémented within GULP
analytically. However, finite differences may be used in boration with free
energy minimisation in order to determine this tensor.

1.3.14.2 Bulk and shear moduli

Like the elastic constant tensor, the bulk)(and shear@) moduli contain infor-
mation regarding the hardness of a material with respectatmus types of de-
formation. Experimentally a bulk modulus is much more fat¢d determine than
the elastic constant tensor. If the structure of a matesiatudied as a function of
applied isotropic pressure, then a plot of pressure verslusne can be fitted to an
equation of state where the bulk modulus is one of the curvapeters. Typically
a third or fourth order Birch-Murgnahan equation of statatised. Alternatively,
the bulk and shear moduli are also clearly related to the etesof the elastic con-
stant. However, there is no unique definition of this transi@tion. Here we give
three different definitions due to Reuss, Voight and Hill][8&elow are the equa-
tions for the Reuss and Voight definitions, while the Hillwas are defined as the
average of the other two:

1
Kvoight = 9 (C11 + Oy + C33 4+ 2 (Cia + Ci3 + Ca3))
Kpeuss = (S11 + S22 + S33 + 2 (S12 + S13 + 523))_1

1
Gvoight = 15 (C11+ Co + Cs3 + 3 (Cug + Cs5 + Cog) — Cra — Cr13 — Cag)

15
4 (S11 + Sa2 + Ss33 — S12 — S13 — Sa3) + 3 (Saa + Ss5 + See)

GReuss =

1.3.14.3 Young’s moduli

When a uniaxial tension is applied to a material then thetlejng of the material
is measured according to the strain. The ratio of stressamsiefines the value of
the Young’s modulus for that axis:

Uaa
Y,=—
60(0&

Since a material will always increase in length under tamdioe value of this quan-
tity should always be positive. The Young's moduli in eachihef Cartesian direc-
tions can be calculated from the elastic compliances:

Y, = S
Y, = 5y
Y, =S5
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1.3.14.4 Poisson’s ratio

Complementary to Young’s modulus is the Poisson ratio, whieasures the change
in a material at right angles to the uniaxial stress. Forynals defined as the ratio
of lateral to longitudinal strain under a uniform, uniaxgtess. The expression
used to calculate this property, assuming an isotropic umedis given below [81]:

0o (B) = —SaapsYs

Because most materials naturally shrink orthogonal to @hegbtension this leads
to positive values for Poisson’s ratio, with a theoreticaxmum of 0.5. Typi-
cal values for many materials lie in the range 0.2-0.3, tionggative values are
also known. For an isotropic material this quantity can ddeaelated to the bulk
modulus:
oLl Y
3(1—20)

1.3.14.5 Acoustic velocities

The acoustic velocities are key quantities in the integireh of seismic data. The
polycrystalline averages of these acoustic velocitiessolal can be derived from
the bulk and shear moduli of the material, as well as the tkensi There are two
values, that for a transverse wavg, and that for a longitudinal wavé;,, which
are given by:

V., =4/ —
P

4G + 3K

3p
As to be expected, there is some degree of variability in #leuwtated values ac-
cording to the definition of the bulk and shear moduli emptbye

V‘p:

1.3.14.6 Static and high frequency dielectric constants

The dielectric properties of a material are of crucial intpoce in many contexts,
including those beyond the strictly bulk properties. Foamyple, the response of
a solid to a charged defect depends on the inverse of thecttieleonstant. The
actual value of the dielectric constant varies accordintpédrequency of the elec-
tromagnetic field applied. Commonly two extreme values areted, namely the
static and high frequency dielectric constants. In thacslatit all degrees of free-
dom of the crystal, both nuclear and electronic, are ablespond to the electric
field and therefore to provide screening. At the high fregquydimit the oscillation
is greater than the maximum vibrational frequency of theemal and therefore
only the electrons are able to respond to the perturbatisndaough. Here we
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describe how to calculate these extremal values, whiledBe of intermediate fre-
guencies will be presented later.

The static dielectric constant (3 x 3) tensor can be detexchirom the Cartesian
second derivative matrix of all particled),3, and the vectorg, containing the

charges of all particles: A

€ap = Oap + VW (CID;,G'IQ)
The expression for the high frequency dielectric constaudentical to that for the
static equivalent, except that the second derivative mafl,;, now only includes
the Cartesian components for any shells present within tbeéem If a core only
model is being used then the high frequency dielectric teisspist a unit matrix.
Hence information regarding the high frequency dieleatonstants is particularly
useful in determining the parameters of a shell model dudéeoelatively direct
correlation.

Because the dielectric constant tensor depends on thesegecond derivative
matrix, it has many of the characteristics of the Hessiarrimmand is therefore
quite a sensitive indicator of whether a potential modeéissible. Extreme values,
particularly negative ones, instantly point to the factttttee potential model is
inadequate or that the system wishes to undergo a symmegngeh

1.3.14.7 Refractive indices

The refractive indices of a material, are simply related to the dielectric constant

by:

n=\/e
For orthorhombic, tetragonal or cubic unit cells, in thenstard orientation, this
represents a trivial mapping since the dielectric condtamgor is a diagonal matrix
and so the square roots can be taken directly. For otheratigystems it is neces-
sary to diagonalise the tensor first and then find the refradtidices in this new
axis eigensystem.

1.3.14.8 Piezoelectric constants

The piezoelectric constants are key quantities in manyni@odgical applications,
since they govern the correlation between strain in a nadtend applied elec-
tric field for non-centrosymmetric materials (centrosyntneanaterials necessarily
have zero for all piezoelectric constants). There are s¢ddferent types of piezo-
electric constant too, depending on whether it is the psddion being induced by
a given strain that it is being considered or the stressfstnauced by an applied
electric field. In GULP, both the piezoelectric stress cant,d, and the piezoelec-
tric strain constants;, are calculated:



0P,
Cai —
“ 862‘
The two sets are related by a transformation involving eithe elastic constant, or

the elastic compliance tensor, depending on the direclitve. piezoelectric strain
constants are calculated from the Cartesian second deevaatrices according to:

4 U\t [ oU

v \oa05) \ 930
The above piezoelectric strain constants can be readitgfitamed into piezoelec-
tric stress constants by multiplication by the elastic cbamge tensor.

N-1
Cai — — Z

k=1

1.3.14.9 Electrostatic potential, electric field and eledt field gradients

The electrostatic site potential is a measure of the Coulortdraction per unit
charge experienced by an ion at a given position in spaces ddn be formally
defined by;

-y

where the summation explicitly excludes the case whiere j. Clearly this is
closely defined to the definition of the electrostatic enethgg two simply being
related by;

45
<y

. 1
electrostatic
U =5 Z aVi
=1

Similar considerations also apply with regard to periogistems (i.e. an appropri-
ate charge summation technique must be utilised with a reagehand dipole of
zero).

The electrostatic potential is a useful quantity for qusivge predictions as to
certain properties of a material. For instance, if a striecttontains several distinct
oxygen sites one might expect that there would be a coroglietween site poten-
tial and basicity. However, the limitations of the point jamr dipolar shell, model
must be kept in mind. Certainly the absolute site potentithbe totally dependent
on the choice of charges in the potential model, and thezefdlt be arbitrary, so
at best only trends should be considered.

Based on the calculation of the site potential, the eleéld, and the electric
field gradient may also be determined as the first and seconhtiees, respec-
tively, of this quantity, while again excluding the case vehe= j;
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The electric field gradient tensor is perhaps the most uspfahtity since it may
be transformed into the so-called asymmetry paramgtevhich can be important
in the interpretation of solid state NMR data [82]. If we repent the tensorial
components of the electric field gradient Es;, then first the (3x3) matrix can
be diagonalised to yield the three principal axis compasént,, V,,, andV,..
If the components are labelléd, V5, and Vs, such thafVs|>|V,|>|V;|, then the
asymmetry parameter is defined as;

N
(36% ﬁ% 7 aﬁ)
= ”Tj

j=1 ¥

Vel = v
Vi

which ensures that the values lie in the range 0-1. A high sgtnnsite, such as
one of O, point group where all components are equal, would therefiaree an
asymmetry of zero.

1.3.14.10 Born effective charges

The quantification of the charges associated with atoms/isrone of the most
problematic tasks in theoretical chemistry. Given thatdt@mic charge is not a
direct quantum mechanical observable, it is therefore aficaal quantity, but one
that is nonetheless useful in the development of understgritbm quantitative
results. Not surprisingly there are many different defoms of charge, the most
famous of which is that due to Mulliken [37], where overlamdity is apportioned
equally to both nuclear centres. More recently, there has lsensiderable interest
in Bader analysis [83] as a means of partitioning electromsidg. Both of these
aforementioned schemes are based on the analysis of thaydeadgrix, or the
density itself. However, there is another family of chargdimitions which define
the atomic charges in terms of the response of the dipole mbofehe system
with respect to perturbations. Since the dipole is a genolbservable, such charge
definitions are particularly attractive for forcefields hey describe the charges that
are consistent with the response of the material to atonsgglacements.

The most widely used definition in this second category isBbe effective
charge:

Born __ aua
Yo op

Here the charge of an atom is now a symmetric (3x3) tensotahtity since it
describes the derivative of the three Cartesian comporedritee dipole moment
with respect to the three Cartesian atomic displacementsile\the definition of
the dipole moment is complicated by the choice of the pddicimages of each
ion, this complication doesn't affect the derivatives oé ttipole moment within
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the present model. Differentiation of the dipole momentige#o the following
expression for the Born effective charge;

Born core

_ -1 shell
q; =4q; af — (Dcore—shellDshell_shellq )z

where the first term on the right-hand side is the core chairgfgedon, and the sec-
ond term is the corresponding component of the product ottre-shell second
derivative matrix with the inverse of the shell-shell sedaerivative matrix, scaled
by the vector of shell chargeg"<!. Physically, the second term corresponds to the
response of all the shells present to the atomic displaceaiertom i, or in other
words, the electronic contribution. Hence for a rigid ionaeb the Born effective
charge tensor is equal to a diagonal matrix with all the ded@lements equal
to the core charge. Increasingly the Born effective chaggesbeing determined
from ab initio calculations, thus creating a new avenue for determinied] siodel
parameters beyond the fitting of dielectric constants. Beythis, the Born effec-
tive charges are also especially important in the determanaf I'-point phonon
frequencies, as will be discussed in the next section.

1.3.14.11 Phonons

Atoms must constantly be in motion as a consequence of theeHleerg uncer-
tainty principle and this is achieved through vibrationst |éw temperatures the
vibrations correspond to simple harmonic motion about th&itpn of minimum
energy, while as the temperature increases they becomeasingly anharmonic.
For a molecule, there will bBN — 6 vibrational modes (oBN — 5 for a linear
system). In the case of an infinitely perfect 3D solid, ther lve a correspond-
ing infinite number of phonons. These phonons are descripaxloulating their
values at points in reciprocal space, usually within the &sllouin zone. Hence
we will obtain3N phonons pek-point. The lowest three modes represent the so-
called acoustic branch which tend to values of zero at théreai the Brillouin
zone & = 0,0,0), known as thd'-point. At this point, the acoustic modes cor-
respond to the pure translation of the crystal lattice, dnd tthey are modes of
zero frequency. A plot of the vibrational frequencies verkives rise to phonon
dispersion curves.

To calculate the vibrations or phonons of a system, theistagoint is the
force constant matrix, given by the second derivatives watspect to the atoms
in Cartesian space. In the case of a solid, the terms must litgphed by the
corresponding phase factekp (ik.r). Thus the force constant matrik, between
two atomsi andj is given by;

Eajﬁ (k)) = ER: <aaagﬂ> exp (Zk? (Tij + R))
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The summation oveR represents the sum over lattice vectors within the cut-off
radius. This matrix of force constants is then convertedhéodynamical matrixD,
by multiplying by the inverse square root masses of the ions:

1
Diqjp (k) = ——— Fiajp (k)
(mimy;)?

The origin of the three acoustic phonons at theoint for a solid, or in the
regular vibrational spectrum for a molecule, arises froe ¢hhm rules that govern
the energy derivatives. Firstly, the sum of all first derives, or alternatively forces,
must be equal to zero in the absence of an external force:

> (50) -0

=1

Secondly, by further differentiating the above expressiboan be shown that the
on-diagonal elements of the force constant matrix are eguile negative sum of
the off-diagonal elements:

PU N _ g (0T
80@8@ N i=1 ao‘iaﬁj

where the summation now excludes the case whery. It should be noted that if
a phonon calculation is performed for a surface using a tgpen strategy, as will
be discussed later, then there will no longer be three motiesro frequency at
the zone-centre. This is because the influence of regions2agcan external force,
which breaks the translational invariance.

In forming the dynamical matrix from the force constant mathere are a
number of issues relating to particular forcefields andesysiypes. The most com-
mon issue relates to the use of the shell model, in which thsshave zero mass.
Since the number of vibrational modes is strictly given bgeghtimes the num-
ber of atoms, which in this case also corresponds the nunfbesres, then the
shell co-ordinates cannot appear directly in the dynanmettix. Instead the shell
contributions are factored into the force constants of dres according to the ex-
pression:

total -1
Fcc :Fcc_chFsstc

wheref,., F,,, andF,. are the core-core, shell-shell and shell-core force comsta
matrices, respectively, anfd., is just the transpose df,.. In the case of the breath-
ing shell model, the shell index is extended to run over ttedl shdius, as well as
its Cartesian co-ordinates.

At the I'-point there is an extra complication in the calculationted phonons.
In materials where the atoms possess a charge, the degenéthe Transverse
Optical (TO) and Longitudinal (LO) Optical modes is brokemedo the electric
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field that is generated during vibration. This effect is nikdvaed for in the usual
analytic evaluation of the dynamical matrix. Furthermahe, precise splitting that
occurs also depends on the direction of approach td'tpeint in reciprocal space,
k''(i.e. the LO and TO modes are likely to be discontinuous atpoint in phonon
dispersion plots). If the Born effective charges are knohentthis non-analytic
term [84] can be corrected for by adding a correction to theadhyical matrix [38]:

An (kF.qg)orn)a (kl“.q?orn)ﬁ

Dy
Vv (mlmj)% (kFGOOkF>a,B

iaj B =

where terms have the meanings as previously defined. As tapgectd, the in-
fluence of the charges on the splitting is mediated in invpreportion to the high
frequency dielectric constant tensor.

Two scenarios arise with regard to the calculation ofltigoint phonons. If the
value for a specific direction of approach is required, siucimahe case of a phonon
dispersion curve, then the value bfmay be explicitly specified. The direction
of approach is automatically set equal to the direction ef phonon dispersion
curve when thd'-point is part of one in GULP. Alternatively, if the intentias to
compute the infra-red spectrum as a polycrystalline averégen the phonons at
this point should be a spherical average over all possibgmtations. To allow for
this last possibility, there is the possibility within GULB perform a numerical
integration by sampling the phonon modes as a functioé afhd ¢ in spherical
polar coordinates and then averaging the resulting fregjaen

1.3.14.12 Vibrational partition function

Statistical mechanics allows the connection to be madedssivnicroscopic quan-
tum energy levels and macroscopic thermodynamic obsersdBb]. Pivotal to
this process is the partition functio®,“*, for the system. In order to determine
this quantity we make the assumption that all forms of enargyindependent and
therefore that the total energy is just the sum of contrdmgifrom translation, ro-
tation, vibration and the electronic state. In the case oblal,swe can neglect
the translational and rotational components, and furtlheensince we are consid-
ering forcefield methods the electronic energy is not diyecalculated. Hence,
the problem reduces down to one of determining the vibragioergy levels, and
subsequently the corresponding partition function.

The vibrational energy levels for a harmonic oscillator tbe mth mode are
simply given by;

U (n, k) = (n 4 %) heo (m, k)

if the frequency is specified in Hz. By summing over all endeyels it is possible
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to show that the vibrational partition function is equal to;

vib _ oXp (_2£;T)
=R

L—exp (7))

Here, and subsequently, the explicit dependance of theidrezy on mode and
k-point has been dropped for brevity. Substituting this egpion into the various
statistical mechanical expressions fors thermodynamaaties, we obtain the fol-
lowing relationships:

m

Uvibzzzk:wk; (%hw—l—( (_h:)w _1))

)
i %:%:wk <%hw +kgTIn (1 —Xp <_;Tw>>>

2 hw
Cv = 5 wykp (khu;> eXp( ks ) i
F w1/ (exe () 1)

Note that the first term in the internal energy is just the enmt vibrational energy.
In the above equations a sum over points in the Brillouin zisnecluded and
the termw,, represents the weight of that particular point, such thatstiim of all

weights is equal to one. Formally speaking, this sum shoeldrbintegration over
the phonon density of states. In practice, a discrete sunoiotgis typically used
to numerically integrate the quantities.

There are a number of different choices possible for the S@omts in the
Brillouin zone for integration of the thermodynamic profes, just as there are for
integration of the band structure in an electronic cal¢atat For high symmetry
materials there are occasionally special point(s), sudh@se due to Baldereschi
[86], and Chadi and Cohen [87]. However, the most appropimegieneral is usually
the Monkhorst-Pack scheme [88]. This involves an evenlgspanesh ok-points,
given by three so-called shrinking factors, one along eachdd the Brillouin zone.
This still leaves the issue of the translational positiorthef mesh relative to the
origin. The optimal choice is to maximise the distance opalhts from the origin
along each axis by using an offset of half a mesh spacing fraretto the first
mesh point. The benefits of this choice are that it incredsesate of convergence
as a function of increasing shrinking factor, as well as diva the issue of the
non-analytic correction to the LO/TO splitting at thepoint.

If the space group symmetry has been specified for the mktévémn it is pos-
sible to determine the Patterson group, which is the egemialf the space group
in reciprocal space. Note that all systems have at leastsimresymmetry (also
known as time-reversal symmetry) in the Brillouin zone - et that is always used
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to accelerate the Ewald sum. By using the Patterson groigoitly necessary to
sum overk-points that lie within the asymmetric wedge of the Brillo@wone, with
appropriate weighting of points situated on the bounda#j.[8This can lead to
substantial computational savings for systems with smatleells (and therefore
high shrinking factors) and high symmetry.

When calculating thermodynamic quantities it is importemensure conver-
gence to the desired precision with respect to the shrinfantprs. Because the
mesh is in reciprocal space, the shrinking factor requimdafgiven precision is
inversely proportional to the unit cell length along thatsax

1.3.14.13 Frequency-dependent dielectric constants andftectivity

We have already seen that the limiting dielectric propsertiethe static and high-
frequency limits can be readily calculated for a system. Elmv, the dielectric
constant may also be calculated as an explicit function ®friéquency of applied
field, ws. In order to determine this, first it is necessary to cal@utae oscillator
strength 2, for each vibrational mode based on the Born effective amend the
eigenvectore, for that mode:

N _Born N _Born
i~ €i digy  €i
Qap = (Z T 7) (Ziﬁﬂ 7)

i=1 mf i=1 ml?

The dielectric constant at the applied field is then given by:

cas (07) = a3 (00) + 77 (mz %)

m—1 (w% — w¥

From the form of the above relationship, it can be readilynsat there is a sin-
gularity in the dielectric constant when the applied fragreexactly matches that
of one of the vibrational modes of the system. The limitingdaour of the above
expression is such that the results are equivalent to thequsly calculated values
for the dielectric constant as the frequency of the applieldl fiends to both zero
and infinity.

One further property can be readily extracted from the abdata, which is
the bulk reflectivity. This measures the ratio of the reflddi® absorbed power at
a given frequency. While the frequency-dependent digtectinstant is a tensor,
the reflectivity, R, has a value for each specific direction of incident®, and
reflection,k°“, typically specified as vectors in reciprocal space:

R - (VEE 1Y
! 1/8(0)]0)—1-1

e (wy) = k™ (wy) K™
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1.3.15 Calculation of surface properties

The properties of the surfaces of materials are every bitrgmrtant as the bulk
properties, since they control the interaction betweersthstance and the external
environment. At the most obvious level, the very shape ofpgheticles or crys-
tallites formed is determined by the properties of the sigfeelative to the bulk,
while catalysis and reactions of the material also predamtiy occur at the sur-
face. From the earlier discussion of electrostatics, itppasent that the surface
structure is a key factor in determining the bulk polarisatand net dipole of the
material, which has consequences even for the bulk region.

Due to the interest in surface phenomena, the history of thogesurfaces us-
ing atomistic simulation is also a long one spanning a nurabéifferent computer
codes. Of the recent era, the dominant computer code fassgimulation of ionic
materials has been MARVIN [90], which has been developedgdinle GULP for
many years. However, to ensure the maximum integrationrodtfanality between
bulk and surface simulations, both in terms of forcefield eledas well as accessi-
ble properties, it was decided to incorporate much of thetionality of MARVIN
into GULP to produce a single code capable of simulatingesgstwith any type of
boundary condition from 0-D, through to 3-D. Here we desetitbe methodology
employed for surface calculations.

There are two phases to any surface calculation, namelyéagien of the sur-
face from the bulk material and the subsequent calculatiats @ptimised struc-
ture and properties. Each surface is specified by at leaspigees of information.
Firstly, there are the Miller indice& k) of the plane that defines the orientation of
the bulk cleavage. Secondly, there is the so-called shi&.-the displacement of
the plane relative to the unit cell origin. For simple casesh as thé001) surface
of a rock salt structure there is only one unique choice dt.sHiowever, for more
complex cases there may be several shifts for a given planéethd to distinct sur-
faces. When cleaving surfaces there are also other impaasiderations to take
into account, in particular the type of surface. As illustchin Figure 1.1, there
are three basic types of surface. In type 1, the atomic strectonsists of charge
neutral sheets of ions parallel to the surface plane andathghifts are guaranteed
to yield a surface with no dipole moment in the direction @ furface normal. For
type 2 surfaces, there are combinations of layers of cadodsanions that possess
zero net dipole in the appropriate direction. Hence for wélbsen values of the
shift a non-dipolar surface can be obtained. Finally, f@ety, all cleavage planes
result in a dipolar surface, which is therefore likely to bed stable. While dipolar
surfaces can exist, this normally leads to twinning of @algsbr strong solvation
in order to anul the dipole. Alternatively, the surfaces catonstruct in order to
remove the dipole. This typically involves the creation afion or anion vacancies
at the surface or chemical modification. When an ion is cotuzdly removed, in
practice it is moved to the bottom of the surface slab in autaton in order to
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maintain charge neutrality [91]. Real examples of the thyges of surface are
presented for polymorphs of calcium carbonate in Figure 1.2

From the above, it can be seen that often the creation of ttfi@cguis a signif-
icant task in its own right and can be a complex process. Ivigus programs for
surface calculations, the structure manipulation hasllysb@en performed via the
input deck of the code. Clearly, when reconstructions arelued this can become
rather unwieldy. As a result, a different strategy has bedwpted for use with
GULP. All construction of the surface and structural maiation is performed in-
dependently from the main forcefield engine by graphicalmsedhis is achieved
through an interface to the freely available program GDI8ettgped by Dr Sean
Fleming (http://gdis.seul.org/). This interface allowsfaces to be specified by
their Miller indices, valid shifts to be searched for, ané tieometries then to be
manipulated, if necessary. Once the desired surface steubas been generated,
then the necessary GULP calculation can be performed.

1.3.15.1 Surface energy

The thermodynamic penalty for cleaving a surface from a uditerial is measured
according to the surface energy. Given a bulk energy,of. and an energy for the
same system with a surface created/of, ..., then the surface energiUsg, is
defined as an intensive quantity according to:

Usurface - Ubulk)
A

AUsp = (

whereA is the resulting surface area. By definition, for any stabétamal the sur-
face energy will be endothermic. A calculated negativeasigfenergy implies that
a material should dissociate, i.e. the crystal should dsspato the surrounding
medium.

There are two practical approaches that are widely usedésrdae the surface
energy by computational means. In the first, a two-dimeradisiab of material is
created from the bulk, thus creating two surfaces overdiis method has the ad-
vantage that it can be used within programs that only allowthcee-dimensional
boundary conditions through the introduction of a suffibetdrge vacuum gap
between the images, such that the surfaces don't interagss@athe vacuum. In
addition, it becomes necessary to assess whether the slso ithick enough since
the properties must converge to those of the bulk at the eaitthe slab. In the
second method, a single surface is created by employing aggion strategy, as
shown in Figure 1.3. Here the solid is divided into region hjek contains the sur-
face and all layers of atoms below it that exhibit a signifiatomic relaxation, and
region 2, which contains the rest of the bulk material whéie assumed that no
displacements from the three-dimensional crystal strecire induced. In practice,
only the atoms of region 2 that have an interaction with radicmeed be explicitly
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Figure 1.1: The three types of surface as categorised byefdak type |, where
each layer consists of coplanar anions and cations, andaalapcuts lead to a
nonpolar surface; (b) type lla, where the anions and catonsprising the layers
are not coplanar, but which allows for some surface cuts libthe layers in such
a way as to produce no dipole; (c) type llb, which is as per typeexcept that
some ions must be moved from the surface to the bottom of megjim order to

achieve zero dipole; and (d) type Ill, where there are adtiéng layers of cations
and anions, and all possible planar cuts result in a surfatteanipole moment.
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Figure 1.2: The examples of the three types of surface ifitestl using polymorphs
of calcium carbonate; (a) type | (b) type Il and (c) type lIhéeltype | and Il
surfaces illustrated are from the crystal structure of italavhich due to its high
symmetry has no type Il surfaces present. The type Il examfitem aragonite.
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considered, and so the depth of region 2 is controlled by ti®fts of the force-
field and the Parry sum used for the electrostatics. Thisrgkotethod is the most
efficient and precise for atomistic techniques. Howeves tonsiderably harder
to extend to quantum mechanical methods since the electpanturbations may
extend further into the bulk and embedding, typically viae&r’'s functions, is re-
quired to determine the influence of the electronic strietfrregion 2 on region
1. Through the GDIS interface, it is possible to automalyoadtimate the required
region 1 and 2 sizes needed to converge the surface enertfy vdefault toler-
ance 0f0.001.7/m?) based on the unrelaxed surface energies. However, if there
are strong relaxations of the surface, it may be necessduytteer verify that the
relaxed surface energy is sufficiently converged.

The total energy for a surface calculation comprising twpaas can be written
in terms of the interaction energies within, and betweea different regions:

Uot = Up1 + Ura + U

The energy of region 2 with itsel/s,, is not particularly meaningful, since the re-
gion 2 is just a partial representation of the effectivelfynite bulk material below,
and any given particle within this region will not experienibe full set of interac-
tions that it should. However, this term is just an additieastant that is unaltered
on energy minimisation, or any other displacement of redionrConsequently it
can be ignored in calculations. In the two region model, thergy required to
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Figure 1.3: The two region surface simulation cell viewedight angles to the
surface normal, where solid vertical lines denote the baued between two-
dimensional periodic images of the cell and the dash linecatds the boundary
between region 1 and the frozen region 2.
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determine the surface energy is given by:
1
Usurface - Ull + §U12

Note that while the above energy only includes half of theaed.-region 2 in-
teraction energy, the objective quantity for energy mirsation is the total energy,
which includes the full value df/;,. This is because the energy change of region 2
must be allowed for when optimising.

1.3.15.2 Attachment energy

The surface energy, described above, provides a measuhe adhérmodynamic
stability of a cleavage plane. However, there is a widelyduséernative criterion
which is the attachment energy. This is the energy assacvaté the addition of a
stoichiometric layer of material on to the surface cut:

__ g+l n 1
Uattachment - Utot - Utot - Utot

whereU;}, represents the total internal energy of a surface modelistomg of n
growth layers, and/}, is the energy of the growth layer alone. For any stable
material, this implies that the attachment energy must bexathermic quantity.
In practice, the calculation of the attachment energy isioled from the energy of
interaction of the growth layer at the surface with the résthe underlying material.
This benefits from the fact that the attachment energy carmtzered from a single
calculation, just as is the case for the surface energyeratian by performing the
actual addition of a layer as part of a multistage process.

Although the attachment energy is also a strictly thermadyic quantity, it is
often regarded as representing the kinetics of crystal tiro@cause of the concep-
tual link between the ease of the addition of a growth layer the rate at which a
surface is added to. Consequently, those faces where Hahatent energy is most
exothermic will tend to grow most rapidly.

1.3.15.3 Morphology

The morphology of a crystal is the macroscopic shape thatdpes. Because this
can be readily observed for nearly all materials, eithereurgh electron micro-
scope or, in the case of many naturally occuring mineralsjgyal inspection with

the naked eye, it should provide a ready means to test theityadif a simulation

model. Of course, the reality is rather more complex, siheemhorphology is sen-
sitive to the presence of impurities, the nature of the stlwsed as the growth
medium, and many other factors relating to the sample patijoar Consequently
there are materials where many different morphologies camliserved for the
same compound. A classic example, is that of calcite({O3), where there are
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both several different polymorphs of the bulk material aadesal hundred differ-
ent known morphologies. Many of these variations resulinflmomineralisation
by different species. Despite this, for many pure inorgamaterials morphological
prediction using atomistic techniques is surprisinglycassful.

Crystal morphologies can be calculated based on eitherutiace energy or
attachment energy, which are typically taken to repressswi under conditions
of thermodynamic and kinetic control, respectively. In@rdo do this, it is first
necessary to determine the objective quantity for all $igant faces. Given that
dipolar faces are usually unstable, the number of likeladge planes for most
materials is actually considerably smaller than initialight be conceived of based
on permutations of the Miller indices. Furthermore, whdreré is space group
symmetry present for the bulk, many surface planes are abpnt; thus reducing
the number of unique faces. Finally, only those faces withléingest interplanar
spacings are likely to appear in the morphology [92]. Theialcmorphology is
generated as a three-dimensional Wulff plot [93]. Here tterof the surface
normal distances of all planes from the centre of the polybredre determined
according to the either the surface or attachment energye fiflal shape of the
polyhedron is then determined by the intersection of thav@ge planes. Unstable
surfaces lie outside the polyhedron and never intersectrpMuogical plots can
also be produced through the GDIS interface to GULP.

In the equilibrium morphology approach, the contributidracgiven plane to
the total surface area is inversely proportional to its acefenergy [94]. For the
growth morphology methodology [95], the surface area ¢bation is again in-
versely proportional, but now to the negative of the attaehtrenergy. This is
because surfaces with a highly exothermic attachment gnahgapidly grow out
of the morphology to leave the slow growing bounding faces.

1.3.15.4 Surface phonons

The calculation of the phonons of a 2-D slab is exactly armalsgo that for the
three dimensional case, except that the Brillouin zoness abw two dimensional
leading to dispersion only in they-plane (taking: to be the direction of the surface
normal).

Turning to consider the standard two region surface motletetare some im-
portant issues to consider. Because region 2 is quasiimfiniis only possible to
determine the phonons for the particles in region 1. Theegfine dynamical ma-
trix is constructed based on region 1 alone, but with coatitims to the on-diagonal
matrix blocks from the potential experienced due to a rigwh-vibrating region 2.
Consequently it is assumed that the vibrations of the tweoresgare completely
decoupled. Since this is an approximation, the frequernass the interface of
the regions will be slightly in error, particularly in thedofrequency regime where
coupling is generally strongest. However, the surface rmpdbich are usually the
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ones of primary interest, will be less affected. As alwayg essential to monitor

the convergence of all quantities with respect to incrente region 1 depth. Fi-

nally, because region 1 is vibrating under the influence afdrrnal potential, the

first three frequencies at tHepoint will no longer be zero, though they typically
will be small.

1.3.16 Free energy minimisation

One of the most important issues in solid state modellindpésvariation of ma-
terials properties with the applied conditions. While ispic external pressure is
trivial to incorporate, as has already been shown, inclusicthe effect of temper-
ature is more complex. This process is exacerbated by théhaicthe majority of
potentials have been derived through the use of some emlpirie. experimental)
data which has been measured under a given set of conditid@sce the force-
field itself can often already contain an implicit temperagwor worse, if multiple
pieces of experimental data have been employed that wersumeehat different
conditions, it can be a convolution of several temperatu@se solution to this is
to extract forcefields from quantum mechanical methods abdterything is ob-
tained explicitly at absolute zero. For now, we will assuimat the forcefield has
been derived so as to be free of implicit temperature efféstsvhatever means.
There are several distinct approaches to the inclusiomopésature into simu-
lations. Which one is most appropriate depends on the péatitemperature and
nature of the system. In the low temperature regime, the sitafithe crystal struc-
ture just execute vibrations about their lattice sites,alhin the limit of absolute
zero will be purely harmonic. This situation is best desedilthrough the use of
lattice dynamics, which is the quasi-static approach tating a vibrating lattice.
As the temperature increases, the motions will become asangly anharmonic.
In principle, this can be handled, to a point, through theafssnharmonic correc-
tions to the harmonic lattice dynamics, in order to allowaak phonon-phonon
coupling. However, when the temperature becomes sufflgiaigh that diffusion
can occur it is necessary to switch to an alternative appro&gpically one of two
approaches can then be employed. If detailed informatisagsired concerning
the atomic motions and related properties, then the methobace is molecular
dynamics [96]. This propagates Newton’s equations of nmatiwough time using
a finite difference formalism. Hence it retains time cortiela functions and the
trajectories of all atoms. Its strength is that anharmoffeces are fully included.
However, since it regards nuclei as classical particleis, ivalid at low temper-
atures due to the neglect of the quantisation of vibratioth zero point motion,
unless the Path-Integral formalism is employed. It can lea sieerefore that lattice
dynamics and molecular dynamics are largely complementatigeir regions of
applicability. Although GULP also includes the capability perform molecular
dynamics, this topic will not be discussed here since thesain regard to other
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codes, has been discussed elsewhere [16], and the moreeusigtic, features
will be focussed on here. Likewise, the effect of tempemtan also be explored
through Monte Carlo simulation [80], if the focus is intetyoa over phase space,
with no regard to timescale or kinetic factors, but this topill not be discussed
further because it is not one of the more novel features of RUL

Concentrating now on the use of lattice dynamics for examgirthe temper-
ature dependance of crystal properties, the dominantteffeihe change in the
crystal structure. When heated, most materials undergontleexpansion which
correspondingly leads to softening of many of the mechéapicgerties. There are
a few celebrated examples of materials that actually contra heating, through
the rotation of quasi-rigid polyhedra, which is technolmgdly very importantin the
guest for zero thermal expansion composites.

It has already been shown that it is possible to calculatéi#imholtz free en-
ergy for a given structure as a function of temperature thhaihhe determination of
the vibrational partition function from the phonon densifystates. Hence, a nat-
ural approach to determine the dependance of structurenopei@ture is through
free energy minimisation. Here the key foundation is thesgharmonic approxi-
mation, which assumes that the vibrational frequencieseasetermined as if the
atoms are vibrating purely harmonically while the cell paeters are adjusted to
minimise the free energy. Previous studies have indicdtatthis is a reasonable
approximation until a temperature of approximately hadf thelting point has been
reached.

The major barrier to free energy minimisation is that we haveady seen that
efficient optimisation requires at least the first derivasiof the quantity with re-
spect to the structural variables. Hence a number of appesaevolved for tackling
this problem. LeSagt al[97] developed a method whereby the atoms where repre-
sented as Gaussian distributions, whose width represéiméedbrational motion.
The Gaussian exponent was then regarded as a variatioaahpsar that minimised
the free energy. Hence the free energy could be obtainedutitthirect recourse
to a phonon density of states, making derivatives straigihwdrd. While this ap-
proach is easy to apply to metals, the extension to a more lexngmic systems
is more demanding. A method that approximated the phonosityesf states was
introduced by Sutton [98], which involved taking momentsioé dynamical ma-
trix, as pioneered by Montroll [99] several decades eardiad in the spirit of tight
binding theory. This approach has the advantage that theatiges are taken of
the dynamical matrix elements, rather than of phonon frages, which are the
product of a matrix diagonalisation.

In the field of ionic materials, Parker and Price [8] pionektiee use of free
energy minimisation through the use of numerical derivegtivHere central finite
differences were taken with respect to the cell straind) Wit internal degrees of
freedom being formally optimised at every point. This agmio had the advantage
over the other methods that no approximation was beingduoted beyond the
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quasiharmonic one. However, because this requizés+ 1) optimisations and
phonon evaluations per energy/gradient evaluation wispeet to the free energy,
the minimisation was restricted to the strains alone in otdeeduce the number
of variables,NV, to a maximum of six.

More recently, Kantorovich [100] has derived expressiamsthe analytical
derivatives of the free energy, which were implemented empioraneously in the
program SHELL of Allan and co-workers [101], and in GULP [102 we consider
the differential with respect to strain, though the expi@sswould be identical for
any degree of freedom, then the first derivative of the fresrgnis given by:

8)- () el o) )

where the expression is written in terms of the derivativeshe square of the
frequencies, since these values represent the eigenwaities dynamical matrix.
Their derivatives can be calculated through the applicatibperturbation theory
and expressed as the derivatives of the dynamical matrjeqexd onto the corre-
sponding eigenvectors:

(%ﬂ) — a0 (25 et

In order to determine the derivatives of the phonon freqieseve therefore require
the phased third derivatives of the energy with respect tioeeithree Cartesian
coordinates, or two Cartesian coordinates and one strairinternal and external
variables, respectively.

For the most efficient optimisers, based on Newton-Raphsonniques, we
strictly need the second derivatives with respect to the &eergy, which corre-
sponds to the fourth derivatives of the internal energy. B\, this is considerably
more expensive and complex, so the Hessian matrix is usapiyoximated by the
conventional internal energy Hessian by assuming thatréeednergy contribution
to the curvature is small. Furthermore, the use of updabngpfilae will ultimately
correct for the discrepancy given sufficient optimisatiteps.

With the advent of analytical derivatives, it is now possitd consider two types
of free energy minimisation. The first has been christenedZiro Static Internal
Stress Approximation (ZSISA) by Allan and co-workers [108hich resembles the
approach taken with numerical first derivatives (i.e. the oall is minimised with
respect to the free energy, while maintaining the interregrdes of freedom at a
minimum with respect to the internal energy). When workirithvm this formalism
there is an additional contribution to the strain derivesivwhich corrects for the
fact that internal degrees of freedom are not at a minimurh véigpect to the free

energy:
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Here the approximation is again made that the second deevatatrices can be
approximated by neglecting the free energy contributiom;approximation that
should be enhanced by the cancelation that results fromgakratio. The second
type of optimisation can be called full free energy minintisa (FFEM), in which
the internal degrees of freedom are also minimised withaessip the free energy.
This is potentially appealing since sometimes it is theitietd the internal changes
that might be of interest, for example, the nature of an gaigmr complex within a
microporous material.

Results for silicate materials show a number of interestesjures regarding
the merits of both approaches. Firstly, in the caser-@fuartz where accurate ex-
perimental data is available for comparison, it appears tthe ZSISA approach
underestimates the thermal expansion, while the FFEM ndehmore accurate,
though of course this is subject to the limitations of thec#jpepotential model cho-
sen [102]. However, for all silicates tried so far the fullmmisation approach goes
catasrophically wrong at about ambient conditions. Thilustrative of a general
problem with this approach which tends to drive systems stainility. This can
be readily understood, since the free energy is minimisecrégting phonons that
tend to zero frequency and hence the structure is motivatedetate soft modes.
This behaviour does not tend to happen in the ZSISA approaemnenonly the cell
strains are directly coupled to the free energy and thusdlaxations tend to lead
only to a scaling of modes, rather than more individual clegndience the use of
ZSISA is far more robust and generally recommended for mogigses.

1.3.17 Monte Carlo

An alternative approach to including temperature into ltssuif one is not inter-
ested in the time correlation properties, just the ensemN®eages, is Monte Carlo
simulation. Here the distribution of positions accordingat Boltzmann distribu-
tion is determined numerically for a specified temperatur@ eonditions. Under
the Metropolis importance sampling scheme, if a randomlysein move for the
system leads to a lowering in the energy then the move is set@nd the system
evolves to the new state. If the energy increases, then tive maccepted with a
probability given by:

P <_£>

= exp T

where AU is the energy change associated with the move. There areabgyges
of move available for a system as listed below:

e Translation - this allows atoms or molecules to move in x, y,caccording
to the flags set

¢ Rotation - for rigid molecules, this allows the molecule tgple the rota-
tional distribution
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e Creation/destruction - in the Grand Canonical ensembldecntes can be
inserted or removed to a reservoir of molecules whose crempmential is
specified

1.3.18 Defect calculations

While the simulation of bulk material properties is impartgust as crucial is the
study of both intrinsic and extrinsic defects. Many of thg kgplications of solid
state systems, such as catalysis, electronic and ionicctiniy, ion exchange and
waste immobilisation, critically depend on the utlisatafrthe characteristics of de-
fect centres. Consequently, from the early days of the fieltamistic simulation
defect studied have been one of the most vigorously pursyackst

There are two widely used approaches for performing defaldutations on
solids; the supercell and the cluster methods, with or watrembedding in the
latter case. Both approaches have their merits and demtiting computational
implementation factors aside, the use of embedded clusteisal for the infinitely
dilute limit, while the supercell method is more appropeiédr high concentrations
of defects where there exists significant defect-defeeradtion. In practice, the
nature of the computational method often biases the methoaice. However,
with atomistic techniques both approaches are feasibieeShe supercell method
is simply the extension of a bulk calculation, we will focusré on the embedded
cluster approach. In this particular context, the techaigugenerally referred to
as the Mott-Littleton method [104], after the authors of pheneering work in the
field, though the implementational details differ a littterh their original work.

The basis of the Mott-Littleton method is the so-called tegion strategy. Here
a point called the defect centre is defined, which typica#lg bt a point concentric
with the initial defect site, or, where there is more than deéect, at the mid-
point of the ensemble of point defects. The crystal aroureddéfect centre is
divided into two spherical regions, with the inner spherabdabelled region 1,
and the outer spherical shell of ions being region 2a. Atoatside of these spheres
belong to region 2b, which then extends to infinity. The disiens of these regions
are typically specified either by their radii or the numbeiarfs contained within
them. The ions in region 1 are assumed to be strongly pedullyethe defect
and therefore are relaxed explicitly with respect to theart€sian coordinates. In
contrast, the ions in region 2 are assumed to be weakly peduand therefore
their displacements, with the associated energy of relaxatan be approximated
in some way. Clearly, as the region 1 radius is increasectapproximations will
become increasingly valid, and thus an important stage afactl calculation is
to ensure that the defect energy is sufficiently converged mispect to the region
radii. In some cases the convergence of the absolute defegjyecan be slow, in
which case it may be sufficent to monitor the convergencelafive defect energies
instead. As a guideline, the radius of region 1 and the diffee of the radii of
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regions 1 and 2 should be both be greater than the short-gzotgetial cut-off to
achieve convergence, though for charged defects this mayenadequate.

Within the Mott-Littleton scheme, we can express the totedrgy of the two
region system as the sum of contributions from the energiggmthe regions and
between them:

Utot (2,€) = Uy () + Ura (2, &) + U (§)

wherelU; (x) represents the energy of region 1 as a function of the Cartesior-
dinates,z, Uy, (£) represents the energy of region 2 as a function of the Cartesi
displacementss, and Uy, (x, &) is the energy of interaction between the two re-
gions. At this stage we do not distinguish between regiorsi2b2b. If the forces
acting on region 2 are small, then we can assume that thermresmd the atoms in
this region will be purely harmonic. Hence, the energy ofisad? can be written
as:

Un (6) = 5" Hant

whereHss is the Hessian matrix for region 2. If we now apply the cormfitihat the
displacements in region 2 will be the equilibrium values thields the following

condition:
8Utot (ZL’,f) B 8U12 ($,§)
o€ o o€
Combining this equation, and the previous one, it is possibkliminate the energy
of region 2 from the total energy without direct recourse lie Hessian matrix
(which would be of infinite dimension):

) + Hy& =0

Uot (2,§) = U1 () + Uz (2,€) — % <8U1287(;7§)> 3

Thus the problem of calculating the energy of region 1 in tbeeptial of region 2
has been reduced to evaluating the energy of region 1 andetsction with region
2, without having to evaluate the self energy of region 2.tlk@rmore, in order to
lead to partial cancellation of terms, the quantity caltedas the defect energy -
i.e. the difference between the energy of the perfect regiand 2,U%,, and the
defective casd/¢,, rather than the individual contributions:

Udefect ([L’, 6) = Ut(it (.CL', 6) - Utp;t ([L’, 6)

It should be noted that it is assumed that the energy of angiespeemoved or
added during the formation of the defect has an energy ofadrdinite separation.
If this is not the case, then the defect energy must be cedeciposteriorifor
this. However, such corrections have no influence on theoouwtcof the defect
calculation itself.

There is one important consequence of the above formulafidhe total de-
fect energy, in that it becomes necessary to find the optaresergy with respect
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to the Cartesian coordinates of region 1 by force balandeerahan by energy
minimisation. The point at which the forces tend to zero isaliy only slightly
different from the minimum in the internal energy, depemdam the degree of per-
turbation of region 2. Hence, during an optimisation of tledéedt energy GULP
initially minimises the energy, as per a conventional NewlRaphson procedure.
Once the gradient norm falls below a specified tolerance,regibn 1 lies within
the harmonic region, then the harmonic displacements dioapto the Hessian and
gradients are applied without the use of a line search urdifarces drop below the
specified tolerance.

A further important point relates to the state of the bulkstay when performing
defect calculations. Because of the use of displacementgion 2, it is crucial
that the bulk structure is at an energy minimium with resgedthe internal co-
ordinates before performing a defect calculation. Heneehthlk crystal must be
relaxed to equilibrium at least at constant volume, if nat@istant pressure. Fur-
thermore, it is also important that there are no imaginamyrnam modes within the
Brillouin zone otherwise the displacements in region 2 magrespond to unsta-
ble harmonic equilibrium. The presence of such modes is th& gommon cause
of unphysical results, for instance obtaining negativeedeénergies for intrinsic
defects. Because the presence of defects lowers the syymraditott-Littleton
calculation may encounter instabilities not apparentlierliulk material.

Now it is necessary to consider the treatment of region 2 imenuetail, and
in particular the difference between regions 2a and 2b. ¢iore2a, the forces on
the individual ions due to short-range interatomic potstand the Coulomb term
are explicitly calculated and the local displacement es&@d. While the forces on
region 2a are technically due to all ions in region 1, a comipnogsed approximation
is to evaluate the forces due to defect species only. Thieigpproach taken in the
default calculation method for compatability with earlresults.

In contrast to the above situation for region 2a, for regidnt2e energy of
relaxation must be determined implicitly since this regextends to infinity. It is
assumed that in region 2b the only force acting is that dued@ulomb potential
in order to simplify the problem. By choosing the radius afjioa 2a to always
be greater than that of region 1 by the short-range potecuitabff this can always
be arranged to be valid. Even having retained only the Cohlanteraction in
the perturbation of region 2b, this still leaves many intéiens to consider. To
simplify the problem, the electrostatic potential due téedts in region 1 can be
represented by the multipole moments of the deformatiamated at the defect
centre. If region 2a is sufficiently large, then the only giigant term will be the
monopole moment of the defect (i.e. the net charge). Heheegrtergy of region
2b is evaluated as the induced relaxation energy due to thehaege of the defect
situated at the specified defect centre. While this is a Bagmt approximation, it
usually works well in practice and again becomes valid withréasing region sizes.
In the original Mott-Littleton method, the interaction witegion 2b was described
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by a continuum approximation. However, in subsequent impletations a sum of
the induced polarisation energy is performed over the at@ites. For the general
case of an anisotropic dielectric constant tensor [109,ehergy of region 2b is
calculated as:

af .a
U = 3¢ (z > )
i€2b af cz
where( is the net charge of the defeet; is the distance of théh atom from the
defect centre, andi/*’ is a 3 x 3 matrix for each atomic site, in the Cartesian frame,
that represents the on-site polarisability. The quamigadefinition of the matrix
elements\/* is [4]:

whereD; ! represents the on-diagonal block of a modified inverse skderivative
matrix ande is the static dielectric constant tensor. Note that therseef the
second derivative matrix is singular and therefore a furéy@proximation must
be made. Physically, this problem corresponds to the dinisif the polarisation
between the sublattices being arbitrary. The usual salutigen is to assume that
the polarisation is divided equally between the cation amdrasublattices, with
the second derivative matrix being modified correspongingl the special case of
a cubic crystal, the expression for the region 2b energy essirbplified to:

1 m;
Up=—5Q" | > &
2 ic2b re

wherem; is the average of the diagonal elements of the matfiXfor the cubic
case these will all be equal, but if the isotropic formula evés be applied in a
non-cubic case this would not be so).

Because the expression for the region 2b energy is not phatig short-ranged,
it is appropriate to evaluate it using lattice summatiomiegues analogous to those
applied to the monopole-monopole term. Hence the term isrseohio convergence
based on a perfect infinite lattice and then the contribstioom ions in regions 1
and 2a are subtracted off. The distance dependent factbinvtite expression for
the energy can be rewritten as:

et 1 (P (5)Y | das (=)

r6 8\ Oreors 4 \rt
Hence, by evaluating the equivalent of the Ewald summatothfe inverse fourth
power of distance, and its second derivatives with respe&adrtesian displace-

ments, it is possible to achieve a rapidly convergent exwesfor the energy of
region 2b.
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Having described how defect energies are calculated inrghe@ mention a
few practical points. There are three types of defect thathma specified within
GULP:

e Vacancy
e Interstitial
e Impurity

The last one of these three is clearly the combination of amag and an intersti-
tial at the same atomic position in the structure. The lecatf a vacancy or an
impurity can be specified by reference to either a spatiaitiposor an atom po-
sition by referencing the site. An interstitial, by its vargature, must be specified
by coordinates. When an atom is designated to be vacantptbtérthe core and
shell will be removed automatically since it would not be sble to leave one or
the other present in the system. It is also possible to sp#wt a whole molecule
be removed from the system, when the connectivity has befamede

Most types of calculation, that are logically applicablan@lso be applied to
defect runs, such as optimisation to a minimum or a transgitate. In the case of
vibrations, the frequencies are calculated for a dynamicatiix based on region
1. In must be noted that this is a large approximation, simgeraodes that are
coupled between regions 1 and 2 will not be properly desdrib@nly localised
modes relating to atoms near the centre of region 1 will beectly predicted.
Consequently such calculations of vibrations must be pm&ted cautiously.

Finally, a degree of point group symmetry may be utilisedmtydefect calcu-
lations. An automatic search for common symmetry elemenpeiformed about
the defect centre, including mirror planes afigaxes that are aligned with, or be-
tween, the Cartesian axes. Such symmetry is used to redecrithber of region
1 and region 2 atoms stored, thereby reducing the numbergreds of freedom
for optimisation, as well as taking advantage of symmetigpaeld algorithms to
accelerate the calculation of the energy and its derivative

1.3.19 Derivation of interatomic potentials

One of the major challenges facing anyone wishing to usesfmid methods is to
determine the functional form and parameters required licutzte the energy and
properties. In the field of organic chemistry and biomolesuthere are a number
of well-established forcefields, such as MM3 [106], and ¢éhassociated with the
programs AMBER [14], and CHARMM [15], which are, in princglcapable of
handling most elements typically found in these systemsHQO0D, N, S, P, etc)
in their common hybridisation states. These are constiuateund the molecular
mechanics approach where the forcefield is connectivityedrand interactions are
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described in terms of two-, three-, and four-body bondimg& plus long-range
Coulomb and non-bonded interactions. While there have beeeral attempts to
generate general forcefields that cover the entire periadie, such as UFF [107],
ESFF [108], etc, none have been completely successful. uBeaaf the enormity
of the amount of data required when spanning the whole rahgéements, it is

impractical to determine such a universal forcefield by eroail fitting. Instead

general rules must be used to predict parameters basedrap@sgitions and intrin-
sic properties of the element that are known - for instaneestbctronegativity. Not
surprisingly, this leads to limitations in the quality ofethesults. For most inor-
ganic systems it is usually necessary to derive a forcef@lthie specific material,
or family of materials, of interest.

There are two means by which a forcefield can generally beyelgrif we ex-
clude rule based extrapolations. Firstly, it is possiblelitain parameters by fitting
to a potential energy surface obtained from a non-empiticabretical method.
This would typically consist of results frorab initio calculations, ideally on the
periodic solid [109], or perhaps on a gas phase cluster, em &etter, both of the
aforementioned sources. The potential energy surface edittéd either as a se-
guence of geometries with their corresponding energiesdenvatives of the energy
could also be included to maximise the amount of informafrom each higher
level calculation. Many of the early forcefields for ionic teaals were determined
using electron gas methods [110], in which the energiestefaation between pairs
of ions were determined by a density functional calculatising the overlapping
ionic electron densities, where the anion is confined in gna@giate potential well.
Secondly, parameters can be obtained by empirical fittivghich the normal pro-
cess of using a forcefield to determine the properties of &nadis inverted. This
approach depends on the availability of a range of expetiahelata. Knowledge
of the crystal structure is a definite prerequisite for thisthod, but is insufficient
alone since information is required as to the curvature efahergy surface about
the minimum. This later data may come from quantities sucélastic constants,
bulk moduli, piezoelectric constants, dielectric conttaar phonon frequencies.

In order to perform a fit, first it is necessary to define a qugnhiat measures
the quality of the results, known as the sum of squares;

Nobs

F = Z w; (inbS o ficalc)2
i=1

where N, is the number of observableg’s and f¢*¢ are the fitted and calculated
values of the observable, respectively, ands the weighting factor for the given
observable. Because of the weighting factor, there arefamtennumber of possible
solutions all of which are equally valid. Hence, one of thestmmportant skills
is knowing how to choose appropriate and sensible weightintprs. There are
several criteria that can be used for guidance though.l§irstitting experimental
data, the weighting factor should be inversely proportidoahe uncertainty in the
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measured value. Obviously trusted, precise values shaulgivien more priority

than data where there are large error bars. Secondly, thghtvizsictor should be
inversely proportional to the magnitude of the observalgieased. This ensures
that all values are fitted on an equal footing, regardlessnitsu For example,

fitted vibrational frequencies in wavenumbers are typjcadlo to three orders of
magnitude larger than structural variables.

The fitting process itself involves minimising the abovedtion F'. To do this,
the default approach is similar to that used in optimisatibor many terms, the
evaluation of the derivatives of the sum of squares witheesfo the variables is
complex, and in some of the fitting algorithms that will beatdissed subsequently
it is even impossible. As a result, numerical derivativessemnployed during fitting
since it greatly simplifies the process. Because of thisd#fault optimiser is to
use a BFGS update of an initial on-diagonal only Hessiaminétl by finite dif-
ferences, in a Newton-Raphson process. However, for piéatly difficult cases,
where correlation between variables is strong, there i®gt®n to use a full Hes-
sian matrix, again obtained by finite differences.

Now we turn to specifically consider the fitting methodology the case of
empirical data. Traditionally, the experimental struetig fitted by varying the po-
tential parameters so as to minimise the forces at this aarafigpn, and this is the
default strategy. Other observables, such as elastic aass¢tc, are then calcu-
lated at the experimental structure too. When working whhn $hell model, either
dipole or breathing shell, there is an additional compiaathough in that while
the cores are fully specified since they are equated with tickenof the ions, the
positions/radii of the shells are undefined. One approatthfiswith the shells po-
sitioned to be concentric with the cores. However, this ghysical since itimplies
that there is no ionic polarisation, which defeats the dipéencluding the model
in the first place. A second approach might be to place the abebrding to spec-
ified ion dipoles, but this information is almost impossitdecome by. Only data
about the total polarisation of the unit cell is typicallyg@@ble and a unique atomic
decomposition is not possible. In order to handle this isue simultaneous re-
laxation of shells approach was introduced into GULP [11Hégre the shells are
allowed to move during fitting. Formally, the most correcpagach is to allow the
shells to be energy minimised at every evaluation of the§tfunction. However,
a simpler approach has been implemented in which the slieti$are added as ob-
servables and the shell positions become fitting varialmethis way, the shells are
minimised directly within the fitting procedure. In the ahse of any observables
other than the structure, this is exactly equivalent to mising the shells at every
step of fitting. When observables are present there will ballsdifferences, but
these are usually an acceptable price to pay for the greasera implementation.

There is actually a more fundamental flaw with the approadittofg forces at
the experimental geometry as a method of fitting. Often wgquitie quality of a fit
by the percentage error in the structural variables rati@n the forces. Although
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lowering the forces during a fit generally improves the opgad structure with
respect to experiment, this is not guaranteed to be the easkifdeed we have
found examples where it is not). This can be understood byimgak harmonic
estimate of the atomic displacementsbased on the forceg;

r=H'f

It can be readily seen that the magnitude of the displacesvasd depends on the
inverse of the Hessian matrix. Thus if the forces improve,the description of
the curvature about the minimum deteriorates, then theswan potentially in-
crease. If curvature information is included in the fit, thiis can tend to reduce
this problem. However, there is a further difficulty hererraally speaking, the ex-
pressions for the elastic constants and other properteedefmed about a position
of zero stress and zero internal derivative. Thereforegutating the properties at
the experimental structure when the forces are non-zedsl&aerrors also. The
solution to both of these dilemas is to use the so-calleck ielzng methodology
[111] in which the structure is fully optimised at every avaiion of the fitting func-
tion and the properties calculated at the optimised cordigum. Obviously this is
a far more expensive procedure, but does yield the mosbtelrasults. Also there
is the requirement that the initial potential set is reabt@manough to actually give
a valid minimisation of the structure.

Having obtained an apparently successful fit, it is impdrtarassess the qual-
ity of the results, since there are plenty of pitfalls and sovergence shouldn’t be
taken to represent a good quality solution. Firstly, theeptial model should be
tested for all reasonable properties, not just those us#ukifit. It could easily be
the case that a forcefield reproduces a high symmetry steuetod, say, a single
curvature observable, such as the bulk modulus. Howevammation of the full
elastic constant tensor, dielectric properties and phemoight reveal that the sys-
tem is unstable with respect to a lowering of symmetry whiclulgn’t show up in
the fit. Secondly, the forcefield could be transferred to sedéht material, not used
in the original fit, to test whether the results are sensiblaally, it is important to
look at the potential parameters and assess whether theensiarte physically sen-
sible. For instance, it is not uncommon for dispersion tetongecome extremely
large if allowed to fit unconstrained. While this might haweproved the sum of
squares for one particular system, it means all hope offeeaasility has been lost.
Similarly, there can often be problems with fittilgandp of a Buckingham poten-
tial concurrently due to the strong correlation coefficesitieen the parameters.

The focus above has been primarily on empirical derivatibimt@ratomic po-
tentials. However, with the increasing ability to performripdic ab initio calcula-
tions on solids an attractive alternative is to derive fedds that attempt to repro-
duce the results of such methods. There are several reastaisetthis approach.
Firstly, by fitting the outcomes of a single Hamiltonian itgessible to guarantee
that the training set is fully consistent (i.e. there are rifecences in temperature,
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pressure, sample quality, or variable uncertainities enabservables). Secondly,
data can be obtained for materials were no experimentainrdtion exists or at ge-
ometries that are significantly perturbed from the equilibrone. Thirdly, the data
from quantum mechanical methods is free of statistical raeal effects, such
as thermal vibrations and zero point motion. Hence, if tme &i to perform free
energy minimisation then the interatomic potentials vefpresent a proper starting
point for the inclusion of these quantities.

Fitting of quantum mechanical data can be performed in ohe@fvays, either
by proceeding in the same fashion as for empirical derivatio by use of an energy
hypersurface. In the latter case, this is achieved by spagifa series of structures
with their corresponding energies, and optionally firstieiives. Typically the
structures would include the equilibrium configuration aslmany distinct dis-
tortions about this point in order to probe as many diffeiat¢ratomic distances
between atoms as possible. Perhaps the most difficult dadisihow to weight
the configurations. Unless the forcefield is able to repredihe ab initio data
very accurately, then it is usually desirable to weight thenffavour of configura-
tions nearer the equilibrium structure. One approach thatdeen taken is to use a
Boltzmann factor weighting based on the energy differendeé minimum energy
configuration, with an appropriate choice of temperatuthéatask ultimately to be
performed [112]. However, there are many other possiblécelsdoo. A further is-
sue concerns the fitting of quantum mechanical energieseddnihese values have
been converted to a binding or lattice energy with referdndbe dissociated state
of the species within the system then it is inappropriatettth® absolute values
of the energies. Consequently, the easiest solution isctade an additive energy
shift parameter in the fit, such that only relative energiresaatually fitted.

Finally, the option exists within GULP to perform fitting ngl genetic algo-
rithms as well as via least squares techniques. This may temfoaly useful in
cases where a complex system is being fitted when there isasomable starting
approximation to the forcefield available or where there in@aynultiple local min-
ima in the parameter space. However, to date we have yet tuater a situation
where this approach has proved beneficial over the more atiomal methodology.
This emphasizes that there is no substitute for making philgisensible choices
for the functional form of the forcefield and the initial peraters.

1.3.20 Calculation of derivatives

In order to be able to optimise structures efficiently anddlzalate many proper-
ties requires the availability of derivatives. While findéference methods can be
used to determine these, this is both inefficient and inatedor forcefields, since
numerical errors can cause problems, especially when paledo not go exactly
to zero at the cut-off distance. Consequently all deriestiare determined ana-
Iytically in GULP. All functional forms for the energy haveguo analytic second
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derivatives available, while two-, three- and four-bodyenactions include third
derivatives. In addition, analytic third derivatives candalculated for the embed-
ded atom method, but currently not for any other many-bodegmimal functions.
Because the determination of derivatives is central to ntamgntities, a brief
description of the approach to their calculation is giverehehile fuller details can
be found in both the original Harwell Report [113], and theéseguent publication
of many of these details[114]. Ultimately two types of dative are required -
those with respect to atomic degrees of freedom and thoserespect to the unit
cell. In GULP, all atomic coordinate derivatives are cadtet in the Cartesian
frame of reference and then transformed to the fractionaldioate derivatives,

when appropriate to the periodicity. For the unit cell, stiderivatives are taken as
previously described.

Both the Cartesian and strain derivatives can be relatedébaf pivotal quanti-
ties, which are the first derivatives with respect to therstigmic distances, divided

by the distance:
oU _ (19U
da \r or N

U _ (10U

de  \ror of
where, in the expression for the strain derivative, the congmtsa andj are the
appropriate Cartesian directions for the given strain.(e.gimpliesa = y and

6 = z). Itis implicit that all quantities are subscripted withto indicate that the
terms refer to a specific pairwise interaction. Let us intraglthe shorthand:

10U

Ul‘(?ﬁ)

10 (10U
U%(za(za))
U (L9 (Lo [LoU
3 ror \ror \r Or

The second derivatives can then be obtained by differemjiahe above expres-
sions once more and written as:

o*U
aaaﬁ = UQOéﬁ + Ul(;a/g
o°U
80{86 = UQOéﬁ’}/ -+ U1 (ﬁ5m + ’750/3)
o*U 1
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Likewise, the third derivatives can be obtained by furthiéfedentiation:

PU
D003y Usa By + Us (adgy + Bary + Y00s)
*U
Badpoe, = UsaPiCHUala (s + () + 0 (100 + Char) +7C000) +

Ur (OaryOc + Gacdpy)

Note that for free energy minimisation, which is were thedtderivatives are re-
quired, only the derivatives with respect to two Cartesiaordinates and one strain,
or three Cartesian coordinates are needed.

In both three-body and four-body terms there exist denrestiwith respect to
either a trignometric function of an angle, or the anglelitSEnese derivatives can
be converted into the above forms through the use of the easle:

cos (6) _ T%Q + r%?) - T%?)
2112713
whered is the angle at the pivot atom 1, lying between the vectgysand rys.
Derviatives with respect to angles are therefore obtaihesligh the expression:

00 1 Jcos(0)

or  sin(0) or

Care must be taken in handling the limitéagends to eithe®” or 180°.

1.3.21 Crystal symmetry

An important topic, particularly in the context of optimi&n, is crystal symmetry.
For periodic crystals, there is the option to specify thedsal the asymmetric unit
atoms, the space group number/symbol, and the origin gettirshould be noted
that the use of space group symbols is preferable sincetimdigsshes between dif-
ferent settings of the same space group. Apart from theiigjlof the full unit cell
from the asymmetric unit, the symmetry can be utilised tcatiyeaccelerate the
structural optimisation through several different meambe first benefit of sym-
metry is that it lowers the number of independent geometitables, since many
atomic coordinates are related via a roto-translation atp@r. Furthermore, the
existance of special positions implies that some coordsate not allow to vary,
typically for sites such a%%, %, %) and that in other cases coordinates are not inde-
pendent and must be related by constraints. Even largectieds in scale can be
achieved by using unit cell centring to reduce the centedtidown to the primitive
representation, thereby reducing the number of atoms bgtarfar between 2 and
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4. All of these factors reduce the number of variables, andesthe rate of con-
vergence is usually correlated to the number of independanables, depending
on the algorithm, this can lead to fewer optimisation stegiadprequired. Further-
more, the amount of memory to store the Hessian matrix isaeditas well as there
being a large improvement in the cost of inverting this nxatri

The second gain from the use of symmetry is that it is possiblese new algo-
rithms to calculate the energy and its derivatives thatlvevéewer computations,
provided the symmetry is high enough [115]. Considering a-bedy potential
model, instead of looping over all possible pairs of atomerater to compute the
energy, when symmetry is present it is sufficient to only glate the interactions
between the atoms of the asymmetric unit and all other atofes.a system of
N7atoms in the full unit cell andv® atoms in the asymmetric unit, then the execu-
tion times for the algorithmg/ andT¢, respectively, will be given by:

T/ %Nf (N +1)

T o« N*N/
It can therefore be seen that provided the number of atontseimsymmetric unit
is roughly less than half the number in the full unit cell thba symmetry adapted
algorithm will be faster. The extension of symmetry to othgres of potential
is also straightforward. For example, for a three-body degpotential it is only
necessary to calculate the terms that arise when an asyrmonnatratom lies within
a valid triad of species.

While the symmetry-adapted evaluation of the energy isalivmore care is
required for the derivatives since these are vector/tealsoroperties. For the first
derivatives with respect to atomic positions, it is suffintiéo again only evaluate
the derivatives with respect to the asymmetric unit atont then to scale these
terms by the number of symmetry-equivalent atoms in thedell. Conversely,
the first derivatives with respect to cell strain are more ptax, since although the
interaction of the asymmetric unit with all other atoms spaii possible unique
derivatives, the orientation of the terms now matters. lorslthe strain derivatives
will violate the crystal symmetry if the terms are evaluatedthe asymmetric unit
interacting with the rest of the crystal alone. Howeverggithat the crystal sym-
metry is specified and that the sum of the terms is correcthvegain scaled by
the site multiplicities, it is possible to obtain the cotréicst strain derivatives by
appropriate averaging.

Turning now to the second derivatives, the symmetry-adbgémeration of the
Hessian matrix is more complex. Considering the processhigiwthe Hessian is
generated in the absence of symmetry, there are three gtepsy, the Cartesian
derivatives that are initially generated have to be tramséul into fractional space
by multiplying each 3 x 3 block by the unit cell vector matrirdaits transpose.
This generates the matri%; s, where the subscript signifies a dimension equal to
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number of atomic coordinates in the full unit cell. Secondly, is reduced to the
smaller matrixD,,, where the subscript now signifies that the dimension is equal
to the number of atomic coordinates in the asymmetric urhits 15 achieved using
the transformation matrixls,, and its transpose:

Dyo = TofDyT5q

The transformation matrix is sparse and contains 3 x 3 blbek&een each asym-
metric unit atom and its symmetry equivalent images, whiehjast the rotation
matrices, R, that created those images. The third, and final, step isduceethe
matrix D,, according to any constraints that are present between iczoes. It
is possible to combine the second and third steps into onedynpltiplying the
transformation matrix by the constraint matrix.

All the symmetry unique information concerning the secoadwétives is con-
tained within the columns between the asymmetric unit aedfal cell. Hence,
it is more efficient just to calculate the sub-matfi¥, instead. This can then by
transformed to the required matrix according to:

Daa - afoa

This not only reduces the computational effort in calcuigthe second derivatives,
but also reduces the memory required and lowers the numbreatfx multiplica-
tions required to form the Hessian. The 3 x 3 blocks of the ireguransformation
matrix are given by:

1 Ngqv

Na Z RglRfl

equ n=1

where ¢, is the number of symmetry equivalent atoms to the asymmetit
atoma, and f’ is the atom to which the atornfi maps under the transformation
R-!. Again the second derivatives with respect to strain-steaid strain-internal
are more complex since they are initially generated sudhsfyrametry is violated.
However, resymmetrisation by averaging symmetry relatattimelements solves
this problem.

The use of crystal symmetry in reciprocal space is even minagghtforward
than in real space. Because the Ewald sum can be written tashenaver one-
centred terms in reciprocal space, instead of a pairwisegson, the only change
necessary is to restrict the sum to the asymmetric unit waghr@priate weighting
for site multiplicity. The same strategy is used in the syrtrisation of other one-
centre terms in real space, such as the Einstein model. alisathmetry is also
exploited in the calculation of charges via the electrotigijpequalisation method,
which is thereby accelerated, especially through the regluof the size of the
matrix to be inverted.

Suf =
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1.3.22 Code details

The original version of GULP [115] was written in Fortran 4iice the more recent
standards had yet to be released. This implied that memas\staically allocated
via a series of parameters. Subsequently, non-standagdsans were introduced
to allow the second derivative arrays to be dynamically aled, since they repre-
sented the dominant use of memory. For the current versiomafo90 has now
been adopted leading to full use of dynamic memory.

The program has been compiled and tested for most Unix-epgeating sys-
tems, including Linux and Apple-Macintosh OSX, using mosttfan 90 com-
pilers. While compilation under MS-DOS is in principle piss, this operating
system is not supported since it is the only operating syst&ncannot be auto-
matically catered for within a single standard Makefile.

The code has also been parallelised for the evaluation oénieegy and first
derivatives using MPI, based upon a replicated data paradiyhen performing
calculations on sufficiently large systems that requireube2 of parallel computers,
then the most appropriate types of calculation are usuéhgeconjugate gradient
optimisation or molecular dynamics. Hence, the absenceadrsd derivatives is
less critical. However, a distributed data algorithm fog #econd derivatives and
using Scalapack for matrix diagonalisation/inversion lddee feasible and may be
implemented in the future. Because GULP is currently taegeprimarily at crys-
talline systems, where unit cells are typically small, tiggribution of parallel work
does not use a spatial decomposition. Instead the BrodeeA&lalgorithm [116]
is used for the pairwise loops in real space in order to trynsuee load balancing
over the processors. A similar approach is used for the bmaly potentials based
on the first two atoms of the sequence of four. In the case eétbody potentials,
the work is divided by a straight distribution of pivot atormger the nodes. Par-
allelisation in reciprocal space is achieved by a equaktwi of reciprocal lattice
vectors over nodes. Given that the number of operationg{ector is equal, this
should guarantee load balancing as long as the number pfoeai lattice vectors
is large compared with the number of processors (which i®atralways the case).
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Chapter 2

Results

In this section we present a few illustrations of the appiacaof the new function-
ality within GULP, including validation studies to compangth previous imple-
mentations.

2.0.23 Mechanical properties

The range of mechanical, and related, properties compwyt€&l i P has been sig-
nificantly extended for the present version. Since no &l simulations of ionic
materials would be complete without a mention of the ubmustand evergreen
perennial MgO, we choose to take this well-studied systeamasxample.

Magnesium oxide adopted the cubic rock salt structure asdgsses the well-
known characteristic of exhibiting a Cauchy violation irethlastic constants (i.e.
Cia # Cy). No simple two-body forcefield is capable of reproducing tmany
body effect. Consequently, it is necessary to use a bregsiall model to describe
this material accurately. While there have been previoesithing shell models
for MgO [117], we choose to fit a new set of potentials here teptoduce the
structure, elastic constants, and high and low frequenelediric constants under
ambient conditions. The resulting potential model is désct in Table 2.1, while
the calculated properties are given in Table 2.2.

The calculated properties for magnesium oxide can be seba to excellent
agreement with experiment under ambient conditions, with éxception of the
Poisson ratio. Of course, this agreement is a consequerfaérgf a model with
the correct essential physics to a subset of the experimdaita The disagreement
in the Poisson ratios is because the values are calculategldiferent expressions.
If the Poisson ratio is evaluated based on the sound vedeaticording to:

() -2

2|(E) -]

2

79



Table 2.1: Breathing shell model for magnesium oxide. Hesteel” denotes a
potential that acts on the central position of the shell,levtibshel” denotes an
interaction that acts on the radius of the shell which wasifatel.2A. The charge on
Mg is +2, while the core and shell charges forare+0.8 and—2.8, respectively.

| Species 1| Species 2 A(eV) | p(A) | Cs(eVA®) | k. (eVA~?) | kpsn(eVA?) |

Mg core | O bshel | 28.7374| 0.3092 0.0 - -
O shel O shel 0.0 0.3 54.038 - -
O core O shel - - - 46.1524 -
O shel O bshel - - - - 351.439

Table 2.2: Calculated and experimental properties for rmagm oxide under am-
bient conditions. All experimental elastic propertiesiaien from reference [118].
Note, for the calculated bulkK') and sheafG) moduli the Hill value is taken,
though the variation between definitions is small.

| Properties| Experiment| Calculated|

a(A) 4.212 4.2123
C11 (GPa) 297.0 297.1
Ci2 (GPa) 95.2 95.1
Cu (GPa) 155.7 155.7

e 9.86 9.89

€® 2.96 2.94
K (GPa) 162.5 162.4
G (GPa) 130.4 130.9
Vs (km/s) 6.06 6.05
V, (km/s) 9.68 9.70

o 0.18 0.24
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Figure 2.1: The variation of the elastic constants of maigme®xide with applied
pressure as determined by breathing shell model calcualatip, C'5, andCy, are
presented by a solid, dashed and dot-dashed line, resglgctiv
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then our calculated value becomes 0.182 in good agreem#nthvei determination
of Zhaet al[118].

To provide a test of the model, it is possible to calculateretion of the elas-
tic properties of magnesium oxide as a function of appliexbpure. The variation
of the elastic constants up to 60 GPa is shown in Figure 2.1.

When compared to the experimental results of 2hal, the calculated trend in
the value ofCy; is in good agreement in that it consistently increases upidssure
and approximately doubles in magnitude by the time that 68 GReached. Unfor-
tunately, the trends for the other elastic constants arsmgfood, since the curve
for Cy, flattens with increasing pressure, rather than becomingpste and the
curve forC'y, passes through a maximum which is not observed in the expatah
data from the aforementioned group. However, the calcdlatnds do match the
extrapolated behaviour based upon the results of ultrasoaasurements [119].

2.0.24 Born effective charges

The Born effective charges represent a useful means of cieaising the response
of a potential model to perturbations, particularly thdsat create an electric field.
Increasingly values are becoming available fraim initio techniques for solids
through the application of linear response methods. Hethcgguantity can pro-
vide a useful comparison between the results of formalga#ahell model calcula-
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Table 2.3: Born effective charges (in a.u.) calculated atiog to the shell model
of Sanderst al[120] and from first principles techniques [121]. Values sinewn
for the asymmetric unit atoms with the approximate posgionthe Si atom at
(0.46,0,0) and the O atom at (0.41,0.27,0.11) in space dgrbdpwith the origin set
to (0,0,1/3).

Si O
3.122 0.0 0.0 | -1.406 0.368 0.252
Shellmodel| 0.0 3.530 0.292 0.364 -1.920 -0.517
0.0 -0.171 3.422 0.176 -0.568 -1.711
3.016 0.0 0.0]-1.326 0.429 0.222
LDA 0.0 3.633 0.287 0.480 -1.999 -0.718
0.0 -0.324 3.453 0.298 -0.679 -1.726

tions and more accurate first principles methods.

One of the first materials for which the Born effective chargesre determined
using planewave techniquesdsquartz. In Table 2.3 the values obtained from the
shell model of Sanderst al[120] are compared with those yielded by a planewave
calculation using the Local Density Approximation and neramserving pseu-
dopotentials [121].

The comparison of the Born effective charge tensors dematastthat the oxy-
gen shell model is surprisingly successful at reprodudmgduantum mechanical
data, especially in comparison to rigid ion models, whichuldloyield a diagonal
matrix with all components equivalent. Furthermore, thapsability of the shell
leads to the ions behaving as partially charged speciesredlistic magnitudes.
Consequently, this explains why the seemingly unreasengdd of a formal charge
for Si**actually works extremely well in practice. Similar obseiwas have been
previously made for perovskite materials [122].

2.0.25 Frequency-dependent optical properties

Ever since the early days of atomistic simulation within ghell model context it
has been routine to calculate the static and high frequerstgalric constant ten-
sors. Indeed this data has often been used during the fittowgegs as well. How-
ever, the values obtained from experiment will always besue=ad at a particular
frequency and this will never exactly correspond to theftiing values determined
by the direct means of calculation. As described in the bamkud theory section,
it is possible to evaluate the dielectric properties anthive indices as a function
of radiation frequency for the gamma point.

Here we present results for the frequency variation of thedediric constant
tensor of quartz, shown in Figure 2.2, as calculated usiagthviously mentioned
shell model potential of Sandees al [120]. Note that the limiting values are the
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Figure 2.2: The on-diagonal component of the dielectricstant tensor fok-
guartz in theab plane as a function of frequency of measurement. The sai@ li
represents the calculated shell model values, while th&sesorepresent values es-
timated from experimental measurements of the refractidex as a function of
frequency.

£l - T T ] T T T T 1 T 2

Diclectoic comstnt

-1 = =1

3 1 L ]
1000 200 3000 A0 SINH0
Frequency (cm-1)

same as the ones obtained without reference to the phormurefneies.

In accord with experiment, the dielectric constant de@sasowly with the fre-
guency of measurement until the highest phonon mode of zjuétie Si-O stretch
- is approached. At frequencies below this the curve costaonsiderable vari-
ation caused by the discontinuities when a lattice phonodems reached. For
simplicity, the curve shown is for the dielectric constamtheab plane only. The
corresponding curve for the principal tensor componenalperto the 001 direc-
tion is almost identical, except that the limiting values alightly different and the
positions of the discontinuities due to coincidence witlopdns are displaced to
higher frequency.

While the qualitative agreement with experimental dataisdj there is a quan-
titative discrepancy in the dielectric constant variatidris is a result of the im-
perfection of the original fit to the dielectric data for gtmrthough there are also
issues concerning the variation with temperature sincedlzilations are formally
performed at absolute zero, while the experiment data wasuared at 293 K. How-
ever, the use of empirical fitting implies that the interatopotentials do partially
account for the temperature difference already. At the kivieeasured frequency,
the calculated values are an almost perfect match due t@asterfrate of decrease
of the dielectric constant in the experiment data.
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2.0.26 Surface calculations

Before applying GULP to surfaces problems that were preshjonot possible, it
must first be validated. Firstly, we focus on comparing owutes to MARVIN,
starting with the simple inorganic salt, corundum. In thigimal MARVIN paper
[90], the twelve faces with the lowest interplanar spaciwgse identified and their
surfaces relaxed using several different potential mod€&le calculations utilis-
ing the QM5 model were repeated using both MARVIN with the EBF@inimiser
and the same surfaces generated using GDIS and minimisetUirP Gising its
BFGS minimiser. The unrelaxed surface and attachment Esevgere compared
and both sets of calculations agreed to better thao01./m 2 for the surface en-
ergies and withir).0001eVmol~! for the attachment energies. This indicates that
the 2-D Ewald sum incorporated into GULP is correct. Nextridlaxed surface
and attachment energies were compared. Except for the {8d€) all the GULP
calculations returned the same relaxed surface energyeasothesponding MAR-
VIN run to within 0.0001.Jm~2. The relaxed attachment energies agreed to within
0.003eVmol~t. Excluding the (310) face, the MARVIN calculations took 188
on a 1133MHz Intel Pentium Ill CPU Linux system, whilst the (RJcalculations
took just 108 s. This difference is timing is primarily duethe faster energy calcu-
lation time in GULP since the MARVIN minimiser is based on GELP algorithm
and consequently the number of cycles to minimise a face ihfs&hd MARVIN
only differed by at most one cycle, except for the (21-1) ven&UJLP took 31 cy-
cles versus the 24 for MARVIN. The (310) face is interestiaglee relaxed surface
energy calculated by GULP is the same as that reported inrtmal paper [90]
and it is the minimised surface energy from the present tatiom with MAR-
VIN that is different. Although not stated in the MARVIN papthe minimisations
were done using a combination of minimisers; conjugateigrdas until the gradient
norm is unity, followed by a BFGS minimisation. If the MARVI&&alculations are
repeated with this combination, all surface energies betwWwdARVIN and GULP
agree to within0.0001Jm 2. In conclusion then, we can say that for this simple
inorganic system, GULP and MARVIN produce essentially thms results.

As an example of the application of the new GULP surface déipeb, they
have been recently utilised to search for surface recoctstns of the (10-14)
cleavage plane of calcite [123]. The previous modellingl&si have not found
any evidence of surface reconstructions, despite the LEEDItis of Stipp [124].
A very efficient and assumption free way of finding recongions is to determine
the surface phonon dispersion across the Brillouin zoneraithe presence of any
imaginary phonons will indicate that a reconstruction vgantoccur. This calcula-
tion was performed on the cleavage plane of calcite, usingwacalcite potential
model that we have recently developed. An imaginary moddewasl to be present
at (1/2, 0) in reciprocal space, which indicates that théesyss unstable within the
(1x1) surface cell and that the reconstruction requireddhmation of a (2x1) su-
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Table 2.4: Calculated properties of diamond based on theshaidBrenneret al
[63]. Note that the calculated values for the bond lengthemetgy are not quoted
in the original reference. However, since the experimevaales were part of the
fitted data, we take these values to be equal to the obsenesd on

| Property | Experiment| Original value| GULP value|
Bond length(A) 1.54 1.54 1.5441
Bond energy (eV 3.68 3.68 3.684
C,,(GPa) 10.8 10.7 10.75
C12(GPa) 1.3 1.0 1.26
C14(GPa) 5.8 6.8 7.21

percell. On creation of the surface supercell, the systes peaturbed along the
eigenvector of the imaginary mode and reminimised usingdtienal function op-
timisation technique to ensure that the final Hessian ma#atkthe correct character
for an energy minimum. Finally, the optimised (2x1) cell vee&mined to ensure
that there were no imaginary phonon modes anywhere wittarBitilouin zone.
The calculations were repeated using other calcite modeise literature, which
were found not to possess any imaginary modes.

In the reconstructed surface, as shown in Figure 2.3, evergrsl row of sur-
face carbonate anions are found to rotate. The rotation sthe=O atom of each
carbonate such that it is3° closer to the vertical. This is accompanied by signifi-
cant change in the carbonate geometry with an increase @+46eO angle of3°,
where the two oxygen atoms are those pointing out of the seidad a compensat-
ing decrease in the other two O-C-O angles. Finally, we ri@gthe reconstruction
is confined to the top layer of the surface. In order to confinmdorrect nature of
the surface reconstruction, we have calculated the LEERathat would result,
which is found to be an excellent match to the experimentdepameasured by
Stipp under low pressure conditions.

2.0.27 Bond-order potentials

Given that new implementation of the Brenner model has ba@gnduced into
GULP we present here some results for diamond, Table 2.4reasopsly studied
in the original paper [63], in order to validate the code. B second derivative
properties, there is also the difference that the valuesiogd here are fully analytic
whereas the published values are obtained via finite drifee. This may explain
the small discrepancies in the elastic constants.

As stated in the background section, two algorithms hava beplemented for
the evaluation of the Brenner potential based on eithexyisaératom looping or a
spatial decomposition in order to determine the neighbistir The computational
cost of the two approaches for increasing supercells of drahare illustrated in
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Figure 2.3: Comparison of the geometry for (a) a doubled oelit of the (1x1)

structure for the (10-14) surface of calcite and (b) therasted (2x1) reconstruc-
tion of the same surface. The reconstruction results inyesecond vertical row,
labelled B, adopting a different configuration to the unrestoaucted rows, labelled

A.

L] lk‘f J-'K’. J“k-o ); .l. iy
N -l" P

e ) S
* -w

86



Figure 2.4: A comparison of the computer times required fsingle energy-force
evaluation using the Brenner model according to whetheratgerithm used in-

volves a pairwise sum (solid line) or a spatial decompaosifotashed line) to eval-
uate the neighbour list. Timings given are for a Mac PowetB@d laptop with a

clock speed of 700 MHz.
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Mumbzr of aloms

Figure 2.4. The linear scaling behaviour of the spatial dgoosition can clearly

be seen, as can the fact that this algorithm is effectivghgsar in performance for

systems containing beyond a 100 atoms. Obviously this wHigmint is dependent

on the density of the system, though there are few cases flsobgrbons where the
density is greater than that of diamond. For systems muaiwbal100 atoms the
cost of evaluating the Brenner potential is so negligibleamparison to other tasks,
such as a matrix inversion for property calculation, that ¢thoice of algorithm is

irrelevant.
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Chapter 3

Further background

In this section some of the theory behind GULP is explained r@ferences are
supplied for those who require a more detailed descriptidh@methods involved.

3.0.27.1 Cut-offs and molecules

All short-ranged two-, three- and four-bodied potentiadsénfinite cut-offs in real

space which must be set by the user in some way. Unless thafattiosen is so

large that convergence is genuinely achieved then it effdgtbecomes a param-
eter of the potential. Hence when publishing new potentiatsgood practice to

publish the cut-offs. Similarly, if you are trying to reprack the results of previ-
ously published potentials make sure you use the same fsut-of

The main effect of finite cut-offs is to introduce disconitmes into the energy
surface as atoms move across the boundary. Generally sgedke energy min-
imisation procedure in GULP is not too sensitive to theseabse of the use of
analytical second derivatives. However, if working withlyfirst derivatives or
particularly short cut-offs this can be the reason for a misation failing to satisfy
the required convergence criteria.

An important difference between GULP and some other progresnthat it is
perfectly allowable for potentials to overlap, i.e. two oora potentials can act be-
tween the same species at the same distance. Hence, tharasailting restric-
tions for the cut-offs and complex potential functions canbuilt by combining
several potentials together. Conversely, it is importasitto duplicate potentials
when not intended.

For some types of potential the cut-offs may correspond &nubal criteria
such as bond lengths or they may only need to act between aniessar conversely
only within them. In such cases it is best not to use distant®fs to achieve
the correct effect, but instead to use the molecule handiagties within GULP.
There are three keywords which when specified activate thecule facility within
the program ol ecul e, nol g andnol nec. If any of these words are present
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Table 3.1: Common functional forms for two-body interatomotentials incorpo-
rated into GULP (where represents the distance between two atoarsd ;). For
full documentation see help.txt.

Potential Name

Formula

Units for input

Buckingham

Lennard-Jonés

Harmonic

Morse

Spring (core-shell

General

Stillinger-Weber
(sw2)

Aexp(—r/p) — Cr=5

(e (2" = ea(2))
e = (n/ (m — n)) () /)
( ))(m fm) /)

Aexp(—r/p)r—™ —Cr—"

Aexp(p/(r — rmaz))(Br=* —1)

AineV,pinA, CineVA®
AineVA™, Bin eVA”

cineV,oin A

ksin eVA=2 1 in A
ks in eVA=3, kyin eVA

DineV,ain A-1 roin A
ks ineVA=2, k, in eVA

AineVA™, pinA,
Cin eVA"

AineV,pinA, Bin A*

* ks, k4 are optional

I combination rules permitted
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Table 3.2: Common functional forms for three-body potdstiacorporated into
GULP (wherer represents the distance between two ato®nsd j, 6, represents
the angle between the two interatomic vectsjsandj-£). For full documentation
of all the functional forms available see help.txt.

Potential Name

Formula

Units for input

Stillinger-Weber
(sw3)

Three-body

Three-body

Axilrod-Teller
Exponential

Urey-Bradley

Cosine-harmonig

Bond-angle cross
(bacross)

Kexp(p/(ri2 — mmax) +
p/(r13 — rmax))(cos(fa3) —
cos(6p))?

k(0 — 00)* + gks(0 — 00) + 15k4(0 — 0p)*

5ka (0213 — 00)* exp(—712/p) exp(—r13/p)

K(l -+ 3 cos 9213 COS (9123 COS 9132)/(T12T13T23)3

Aexp(—ri2/p) exp(—r13/p) exp(—raz/rho)

%k(?"gg — 7"0)2

<k (cos 0 — cos 00)°

5 (k;l (Tij — r%) + ko (Tjk - T?k)) (6 — o)

KineV,

pin A

0o in°

ko in eVrad 2,
ks in eVrad3,
k4 in eVrad™

ko in eVrad 2,
Opin®, pin A

K in eVA?
AineV,rinA

kineVA—2,
To in A

koin eV

k1& koin eV A-ldeg!

T harmonic, keyword hr ee
* harmonic + exponential, keywotdhr ee expo
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Table 3.3: Common functional forms for four-body potergialcorporated into
GULP (whereg;;i; is the torsional angle between the plangsandjkl). For full
documentation see the file help.txt.

Potential Name Formula Units for input
Four-body k(1 + cos(ng — ¢p)) | kineV, ¢y in°
Ryckaert-Bellemans " k,,(cos ¢)" k, in eV

Out of plane kd * %2 kin eVA—2

then a search will be performed to locate any molecules witine structures input.
This is done by searching for bonds based on the sum of thdesdvadii plus a

percentage tolerance factor. For most common compoundethalt covalent radii

will be sufficient to locate all the bonds - if this is not thesedhen it is possible for
the user to either increase the tolerance factor or to athestovalent radii using
thecoval ent option from theel enent group of commands.

An alternative scenario is that atoms become bonded whigbldh't be. For
example, metal atoms often can become bonded in ionic congsolbecause the
covalent radii is no longer relevant for a positively chatgen. These bonds can
be removed either by manually setting the radii of the elem@zero or by using
thenobond option to exclude the formation of certain bond types. Whaethe
correct molecules have been located or not can be seen feemdlecule print out
in the output file. The three molecule-based keywords meatabove differ in
what they imply for the treatment of intramolecular elestatics:

nmol ecul e = exclude all Coulomb interactions within the molecule

nmol q = retain all Coulomb interactions within the molecule

nmol mec = exclude all Coulomb interactions between atom which are
bonded (1-2) or two bonds away (1-3)

The specification ofrol nec does not automatically imply that all potentials
will be treated in a molecular mechanics fashion, only tleetbstatic terms. Pro-
viding one of the above there terms is present then optionadsumay be added to
a potential specification line which control aspects of theeptial cut-offs. Below
is a list of the words that are available and whether it is ssapy to still give any
cut-offs on the potential parameter line:
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Option | Effect Cut-offs?
I ntra | only act within a molecule yes

i nt er | only act between molecules yes
bond | only act between bonded atoms no

x12 do not act between bonded atoms | yes

x13 do not act between 1-2 and 1-3 atomges

Although with some options it is necessary to still specifgud-off for gener-
ality, the value may not be important any more. For examplaniO-H potential
for water is specified as being intramolecular then as longhasnaximum dis-
tance cut-off is greater than about 1.0 A then it doesn’t engtarticularly what it
is. Similarly for a potential which is given as beir@ 2 then it doesn’t matter if the
minimum cut-off distance is zero - the potential won’t acivibeen bonded atoms.

By default, GULP dynamically calculates the molecular caetivity during a
calculation. The reason for this is that it ensures that #s¢art file will yield the
same answer as the point in the calculation where it leftldwever, sometimes
difficulties occur because a bond becomes too long and theaulel breaks into
two. When this happens GULP will stop with an error messagthigsoften in-
dicates that the potential model is not working well for tlystem under study. If
the user wants to proceed regardless then there is a keywordvhich tells the
program to fix the connectivity as that at the starting geoyreatd not to update it.
This means that the program will never stop with this errat,ibdoes mean that a
restart may not give the same answer as the initial run if atbave moved too far.

In the case of ionic materials where the user would like tadmemove some of
the numerical problems associated with cut-offs then thezesome other options.
The normal way of doing this is with a cut-and-shifted poi@ntin this approach
the potential is forced to go to zero at the cut-off by addingpastant to the en-
ergy. This makes the energy continuous, but the gradidhhas a discontinuity.
Again this can be resolved by adding a second term whichssth# gradient to
be zero at the cut-off. In GULP this takes the form of a lineant in the dis-
tance which, provided the cut-off isn’t very short, will laminimal effect in the
region of the potential minimum. These corrections arevat#id using the poten-
tial optionsener gy or gr adi ent after the potential type, but are only currently
applicable to certain two-body potentials where it is ajppiette. It should be noted
that some potential functions go to zero by constructiomatcut-off, for example
the Stillinger-Weber two- and three-body potentials.

3.0.27.2 Combination rules

When using Lennard-Jones potentials it iS common to use r@tbn rules to
determine the interaction parameters between two spedibss means that the
parameters for the interaction are determined from onéreemly parameters by

92



some form of averaging. The main advantage of this appraattiat it reduces the
number of parameters to be determined and aids transfiyatfipotentials. Con-
versely, the resulting potentials may not be as accuratarigrone given system.
There are two types of combination rule used, depending cetiven the potential
is being used in the/o or A/B format (see Table 2 for details). If the potentials are
being used in the A/B form then the average is taken using mg&@ mean:

Aij = \/AZ'AJ'
Bi; =/ B;B;

However, if thes/o form is being employed then a more complex relationship is
needed: )
2(eig;)2 (003

(0f +09)

1
af—i-af 6
Uij: T

Within GULP it is possible to specify the parameters by segaiather than by
pairs of species, using ttz¢ onab or epsi | on options. If the worcconbi ne is
added to the specification ofl @nnar d-type potential then the parameters can be
omitted from the input and they will be generated using theapriate combination
rules. In turn this makes it possible to fit potentials baseccombination rules
without having to do this via a series of constraints.

5ij =

3.0.27.3 Mean field theory

One of the biggest problems that can face someone attentptsiigiulate complex
materials is the fact that often they can be partly disomieranvolve partial occu-
pancies of sites. One approach to treating such systemgymsnierate a supercell
so that lots of permutations can be examined. However, th&beu of possibili-
ties is usually too large to examine each one individualliptate the most stable
configuration. Furthermore, this process may alter the sgtmnof crystal. Fitting
potentials to such structures also becomes rather difficult

An alternative approach to handling partial occupanciet® isse mean field
theory. The effect of this is that each site experiences antial which is the
mean of all possible configurations on the disordered mssti In doing so we are
assuming that all possible configurations are equally adylik.e. the less stable
configurations are equally as likely as the more stable offdss may apply to
materials were there is little energetic difference betweenfigurations or to ones
which were formed under kinetic rather than thermodynaroigt®l and haven’t
had chance to achieve a Boltzmann distribution. It must lneddd for any given
material whether it is therefore appropriate to use thigaeagh.
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The practical upshot of the mean field method is that all adgons just become
scaled by the site occupancies of both atoms. This has bg#ermanted in GULP
such that the user can specify the site occupancy in addditire coordinates (see
the later section on the input for further details) and thegpam will automatically
handle most aspects of the mean field approach. This inckrgsing the total
occupancy on a site does not exceed unity and where twodlifferns share a site
with partial occupancy they are constrained to move as desiag in optimisations.

One important word of warning - it is important that the udanks through
interactions carefully when using the partial occupan@tudee to ensure that ev-
erything is handled properly. The biggest danger comesstesys where there are
two partially occupied sites very close to each other suet ith the real system
their occupancy would be mutually exclusive. When this feqgpit is often nec-
essary to specifically exclude potentials between thesasato obtain the correct
behaviour.

3.0.27.4 Algorithms for energy and derivative evaluations

GULP actually contains several different algorithms folicoéating the energy and
its first and second derivatives. By default the program tmitto choose the most
efficient for any given system, excluding possibilities Iswis the cell multipole
method which would actually lead to slight changes in thenens Normally the
user will need to know nothing about what algorithm is beisgdj so this section
is really for the curious.

Usually real-space interactions are calculated in a Idvedftriangular fashion
to avoid double counting of interactions which would giv&erto loops of the form
shown below:

doi =2, numat
doj=1,:-1
[Calculate interaction betweerand;]
enddo
enddo

If there is the possibility of self-terms or interactiongween periodic replica-
tions of the same atom then the= ;j term would not be excluded, though it may
be more efficient to handle this case in a separate loop. Hoissshere there is
significant space group symmetry then a different algorithay be more efficient:

doi=1,nasym
doj =1, numat
[Calculate interaction betweerand;]
enddo
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enddo

wherenasym is the number of species in the asymmetric unit anehat is
the number of atoms in the full unit cell. Both the symmetrapigd and standard
algorithms are present in GULP with selection being madedas the amount
of symmetry in the crystal. The use of symmetry can resultprtauan order of
magnitude speed-up in favourable cases and therefore iswogh using. More
details concerning the use of symmetry, in particular wabprect to the calculation
of derivatives, can be found elsewhere [11].

The second algorithmic aspect to mention applies to thatsita when a con-
stant volume optimisation is being performed and some atmm$eld fixed. Typ-
ical cases where this occurs are in an optical calculatiomhich only shells are
relaxed, or where a molecule is docked within a rigid micn@us material. In
this case the energy of interaction between certain atomsostant term and the
forces on them are ignored. When this happens these atoreg@ugled or frozen
out of the energy calculation after the first point to save potational expense.

3.0.28 Phonons
3.0.28.1 Phonon density of states

We may also be interested in the phonon density of states $otid as the num-
ber of frequencies versus frequency value becomes a cantnfunction when
integrated across the Brillouin zone. While full analytigategration across the
Brillouin zone is not readily carried out, this integral cha approximated by a
numerical integration. We can imagine calculating the mmsnat a grid of points
across the Brillouin zone and summing the values at each puittiplied by the
appropriate weight (which for a simple regular grid is just inverse of the number
of grid points). As the grid spacing goes to zero the resuthisf summation tends
to towards the true result.

For performing these integrations GULP uses a standardseldeveloped by
Monkhorst and Pack [16] for choosing the grid points. Thibased around three
so-called shrinking factorsy;, n, andns - one for each reciprocal lattice vector.
These specify the number of uniformly spaced grid pointsgleach direction.
The only remaining choice is the offset of the grid relatigethie origin. This is
chosen so as to maximise the distance of the grid from anyagesnts, such as
the gamma point as this gives more rapid convergence.

In many cases it is not necessary to utilise large numbersiotpto achieve
reasonable accuracy in the integration of properties, stschhonons, across the
Brillouin zone. For high symmetry systems several schenags been devised to
reduce the number of points to a minimum by utilising spep@hts ink space.
However, because GULP is designed to be general the MorikRack scheme is
used. The user can input special points instead, if knowthisystem of interest.
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Often it is not necessary to integrate across the full Buithozone due to the
presence of symmetry. By using the Patterson group (theespratip of the recip-
rocal lattice) GULP reduces the integration region to tifdhe asymmetric wedge
which may only be 1/48-th of the size of the full volume [17].

When producing plots of the phonon density of states thecalifactor, apart
from the resolution of the integration grid, is the ‘box’ eiZThe continuous density
of states curve has to be approximated by a series of finitens@f frequency or
boxes. Each phonon mode at each point in k space is assigried bmx whose
frequency region it falls into. The smaller the box size tle¢tdr the resolution of
the plot. However, more points will be needed to maintain am variation of
number density.

3.0.28.2 Infra-red phonon intensities

In order to make comparison between theoretically caledlghonon spectra and
experiment it is important to know something about the isigrof the vibrational
modes. Of course the intensity depends on the techniqug lbisied to determine
the frequency as different methods have different selectites. While Raman in-
tensities are not readily calculable from most potentiatiels, due normally to the
absence of polarisabilities higher than dipolar ones, @gprate values for infra-
red spectra can be determined [18]:

Iipoc (), qd)?

all species

whereq is the charge on each species afrid the Cartesian displacement asso-
ciated with the normalised eigenvector.

3.0.28.3 Thermodynamic quantities from phonons

There are a range of quantities that can be readily calaufeden the phonon den-
sity of states. The accuracy with which they are determiheddh clearly depends
on thek points or shrinking factors selected for the Brillouin zangegration. For
systems with large unit cells a small numberkgboints, perhaps even thepoint
alone, will be sufficient. However, for those systems withaiito medium unit
cells it is important to examine how converged the propertialculated are with
respect to the grid size.

If a phonon calculation is performed then GULP will autoroallly print out
the relevant thermodynamical quantities. This output ddpgartly on whether a
temperature has been specified for the given structure el€#hculation is set for
zero Kelvin then only the zero point energy is output:

1
ZPE — Z Wy Z —hv
k—points  all modes
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wherew;, is the weight associated with the givérpoint. In principal, the zero
point energy should be added to the lattice energy when metarg the relative
stability of two different structures. However, because tlerivatives of the zero
point energy are non-trivial it is normally neglected in aresgy minimisation.

For temperatures above absolute zero we can calculateliretional partition
function, which in turn can be readily used to calculate ¢iftgther properties:
Vibrational partition function:

Zib= 2, Wk D <1—exp<—z—;>>_l

k—points  all modes

Vibrational entropy:

dn Zyip
Svip = RIn Zyjiy + RT (T\“>

Helmholtz free energy:
A=U —TSyjp

where

U = Ulattice energy’ Uvibrational energy
Heat capacity at constant volume:

B 0ln Zvib 0% 1In Zvib

3.0.29 Free energies

Although the most common methods for studying the propediematerials as a
function of temperature are molecular dynamics and Monte®Gamulations, there
is an alternative based on static methods within the quasirbnic approximation.
This is to directly minimise the free energy of the system gtv@n temperature,
where the free energy is calculated from the lattice eneogytined with contribu-
tions from the phonons including the entropy and zero paietgy.

The advantages of working with free energy minimisationtaeg MD simula-
tions are quite expensive due to the need to reduce the aimdgriy sampling large
amounts of phase space. Molecular dynamics and free enargyisation are in
fact complementary techniques. The later approach breaks dt high tempera-
tures as anharmonic effects become important - typicallyortks at temperatures
up to half the melting point as a rough guide. Conversely,etular dynamics is
not strictly valid at low temperatures because the zerotpuowtions and quantum
nature of the vibrational levels is ignored.

Although in principle it is possible to analytically fullyimmise the free energy
of a solid, in practice this is extremely difficult as it retgs the fourth derivatives
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of the energy with respect to the Cartesian coordinates.célem number of ap-
proximations are normally made - the main one being that tireipal effect of
temperature is to expand or contract the unit cell and trecetin internal degrees
of freedom is less important.

When changing unit cell parameters we are concerned witlsthbs free en-
ergy as this is appropriate to a constant pressure caloolafihis quantity is related
to the Helmholtz free energy, whose relationship to theatibnal entropy has al-
ready been given previously, by the expression;

G=A+PV

with
P = FPext— Fint

whereP is the pressure. The pressure has two components - any axégplied
pressure plus the internal phonon pressure coming fromititations. The phonon
pressure is given by:
0A
Fint = — 5y

In order to calculate the Gibbs free energy it is thereforeessary to calculate
the derivative of the Helmholtz free energy with respecthe tnit cell volume.
This can be done numerically by finite differences. Centrfiegencing is more
expensive than using forward differences. However, it isegally necessary to
determine the phonon pressure with sufficient accuracyurimeach calculation of
the Helmholtz free energy requires a constant volume msation for the given
set of unit cell parameters, followed by a phonon calcuratio

Once the Gibbs free energy has been calculated then the taget sf a free
energy minimisation is to isotropically expand or contridug unit cell until the ex-
ternal pressure balances the internal pressure. Having tthisithen the derivatives
of the Gibbs free energy can be evaluated numerically byefohifferences and the
unit cell optimised with respect to this quantity.

Because of the three levels of optimisation plus phonoruéations involved,
free energy minimisations are rather expensive and shdlddmindertaken lightly!
Due to the numerical nature of several of the derivativesay ibe necessary for the
user to adjust the finite differencing interval for a caldida to work optimally.
Also the calculations are very sensitive to the quality & timderlying energy sur-
face. Potentials with short cutoffs, leading to disconties, and soft modes can
cause difficulties for the method, so always check your maedilbefore starting.

Free energy minimisation can be used in conjunction witingtto allow a
series of structures at different temperatures to be fitiéainclusion of the thermal
effects, though again this is an expensive procedure. moirtant to note that a
free energy minimisation at O K is not the same as an ordin@atycscalculation.
This is due to the presence of the zero point energy in thedonrethod.
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3.0.30 Defects
3.0.30.1 The Mott-Littleton method

The calculation of defect energies is more difficult and agpnate than the calcu-
lation of bulk properties. Intheory, a defect can cause lerg range perturbations,
particularly if it is not charge-neutral. Consequently ttser must always check the
convergence of the approximations made.

The simplification in the modelling of defects is to dividestbrystal that sur-
rounds the defect into three spherical regions known a®nsgl, 2a and 2b [19-
21]. In region 1 all interactions are treated exactly at anmastic level and the
ions are explicitly allowed to relax in response to the deféxcept in the case of
very short-ranged defects it is not generally possible toea® the desired degree
of convergence by increasing region 1 before running outoofijguter resources.
Consequently, in region 2a some allowance is made for thaga&bn of ions but in
a way that is more economical.

In region 2a the ions are assumed to be situated in an harmati@nd they
subsequently respond to the force of the defect accordi2gly This approxima-
tion is only thus valid for small perturbations and also rieggithat the bulk lattice
has been optimised prior to the defect calculation. Foore@a individual ion dis-
placements are still considered, whereas for region 2b thiymplicit polarisation
of sub-lattices, rather than specific ions, is considered.

If the vectorx represents the positions of ions in region 1, wijileepresents
the displacements of ions in region 2a, then the total enefdlye system may be
written as:

E = E\(z) + En(z, Q) + E2(C)

where E; and E; are the energies of regions 1 and 2 respectively, Apdis the
energy of interaction between them. We now assume that #@gof region 2 is
a quadratic function of the displacements:

1

EQ(C) = §CTWC

We also know that we wish to obtain the displacements in regiéor which
the energy is a minimum:

8E . - 0E12(:1:, C)
o0 0= e W

This expression can be used to eliminatefrom the total energy, leaving it
purely in terms ofF; and F15:

laElg(ZL’, C)

E:E1($)+E12(ZE,C>—2 ac

¢
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The displacements in region 2 are formally a functionzdbr region 1 which
makes the minimisation of the total energy with respect tthlibe positions of
region 1 and the displacements of region 2 potentially cazapdd. This problem
can be avoided by using force balance in region 1 as the ierifer convergence
(i.e. all forces on ions in region 1 must be zero), rather thiarely minimising the
energy. The two approaches are equivalent provided thairréyis at equilibrium
also. This will be achieved provided that the displaceméntegion 2 are small
enough that they are genuinely quadratic.

In terms of the minimisation procedure employed for defedtwlations the
force balance process leads to a slightly different apgroathe bulk optimisation.
Initially the same Newton-Raphson procedure with BFGS ihesgpdating and
line searches is employed to avoid convergence to statigrants which are not
minima. After at least one cycle of the above and when theignadchorm falls
below a certain threshold the minimiser abandons the limeckeprocedure and
aims purely to reduce the gradients to zero, regardlesseoétiergy. In practice
positive changes in the energy near convergence are onl\seal.

The defect energy is now the difference in the total enerfpeshe defective
and perfect latticeF; and E,, respectively, with corrections due to the energy of
any interstitial or vacancy species at infinite separatromfthe lattice £ :

Edefect= £a — Ep + Eos

Two final aspects must be dealt with in order to obtain the fivaking equa-
tions for the defect energy. Firstly, due to the slow coneare of electrostatic
terms in real space alone we cannot evaluate the region lonr@genergy directly.
Instead we must calculate the energy of region 1 interastatigthe perfect lattice
to infinity and then explicitly subtract and add back the temne to ions which
are no longer on their perfect lattice sites. Secondly, beedhe displacements in
region 2 depend on the force acting on a given ion, which in tsira function of
other region 2 ions, there is in fact a linear dependency®ttiergy ort. By suit-
able manipulation of the energy terms this may be removedaed the following
expression for the defect energy:

Edefect = En(dd) - En(dp) + Eloo(dp) - Eloo(pp)
+E12q(dd) — E2q(dp) + E124(pp) — Er24(pd)

8E12a (dd) (9E12a (pd)
> ( or a or )

where the general symbd;;(kl) denotes the energy of interaction summed
over all ions in region interacting with ions in region where: and; can be 1,
2a oroo (signifying a sum over 1, 2a and 2b out to infinity). The letterand!
indicate whether the energy is for the perfect or defectmerdinates in regions
and; respectively, depending on whether they a@ d.
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3.0.30.2 Displacements in region 2a

Expanding the energy as a Taylor series and truncating andgearder gives the
Newton-Raphson estimate of the vector from the current msitipn to the energy
minimum position in terms of the force, acting on the ion:

¢=-Wyg

Hence if we know the local second derivative matrix and thredaacting on
the ion we can calculate its displacement. There are a nuoflpassible ways of
calculating the force acting on the ions in region 2a. Thetmosimon approach
is to use the electrostatic force due to only the defect sgeci.e. the force due
to any interstitial species based on their current posstitess the force due to any
vacancies at the position of the original vacant site. 18 #dy region 2a responds
to the change in the multipole moments of the defect speciegion 1, but not the
influence of other forces. Hence for this approximation t@#y hold the distance
between any defects and the boundary of region 2a shouldelagegthan the short-
range cutoff.

3.0.30.3 Region 2b energy

Region 2b is assumed to be sufficiently far from the defeasttie ions only re-
spond by polarising according to the electrostatic fielditgsy from the total defect
charge placed at the centre of region 1. This can be writtecdbic systems as
follows: | m
By = ——@Q? -

2b 2Q ,i;;’?al R?

Because this expression is just dependant on the distadae@uple of lattice
site related parameters the region 2b energy can be evdlusitey a method analo-
gous to the Ewald sum and then subtracting off the contalbutiom ions in regions
1 and 2a. An alternative more general, but still not compjegeneral, expression is
the following where the lattice site dependant propertyoi& an anisotropic tensor,
rather than a scalar [23]:

Foy = ——Q2 >y =

1#1,2a af
This can again be calculated by partial reciprocal spamtmmation based on the
second derivatives of the—* lattice sum.

Gi Maﬁ Ra Rﬁ

3.0.31 Fitting
3.0.31.1 Fundamentals of fitting

Before any production runs can be performed with an inten&t@otential program
itis necessary to obtain the potential parameters. If yeduaky there may be good
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parameters for your system of interest already publishédariterature so you can
just type them in and get going straight away. Unfortunatefst people are not
so lucky! The fitting facility within GULP [24] allows you toetive interatomic
potentials in either of two possible ways. Firstly, you catetimine the parameters
by fitting to data from some higher quality calculation, s@shanab initio one,
normally by attempting to reproduce an energy hypersurf&seondly, you could
attempt to derive empirical potentials by trying to reprodexperimental data.

Regardless of which method of fitting you are using the keyjtiais the 'sum
of squares’ which measures how good your fit is. Ideally thizud be zero at the
end of a fit - in practice this will only happen for trivial casehere the potentials
can be guaranteed to completely reproduce the data (for geafitting a Morse
potential to a bond length, dissociation energy and frequéor a diatomic should
always work perfectly). The sum of squarés,is defined as follows:

F= Z w(fcalc— fobs>2

all observables

where f-5|cand fgpgare the calculated and observed quantities:amgia weight-
ing factor. There is no such thing as a unique fit as there aiafamte number
of possible fits depending on the choice of the weightingdfiact The choice of
weighting factor for each observable depends on severtrasuch as the rela-
tive magnitude of the quantities and the reliability of ttead(for instance a crystal
structure will generally be more reliable than an elasticstant measurement).

The aim of a fit is to minimise the sum of squares by varying tbeeptial pa-
rameters. There are several standard techniques for gdeast squares problems.
At the moment GULP uses a Newton-Raphson functional miratioae approach
to solving the problem, rather than the more conventiondahowds. This is because
it avoids storing the co-variance matrix. The downside & tiear-redundant vari-
ables are not eliminated. Currently the minimisation of $hen of squares is per-
formed using numerical first derivatives. The reason fongsiumerical derivatives
is because many of the properties, particularly those ddrivom second deriva-
tives, are rather difficult to implement analytical derivas for. Consequently the
value of the gradient norm output during fitting should oné/taken as a rough
guide to convergence.

The choice of which potential parameters to fit belongs touger and is con-
trolled by a series of flags on the potential input line{(ix, 1 = vary). There are
also options contained within the variables sub-sectioraflowing more general
parameters to fit, such as charge distributions. Note thatvitting charges at least
two charges must be varied to have any effect as the programmates one vari-
able due the charge neutrality constraint. There is alsoptien to vary the charge
spl i t between a core and shell while maintaining a constant dwdratge on the
ion. The user may also impose their own constraints on fittargables through the
constrain fit option.
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It is generally recommended that a small number of parameter fitted ini-
tially and the number gradually increased in subsequemantes Often if all pa-
rameters are allowed to vary from the start unphysical patams may result. Dis-
persion terms of Buckingham or Lennard-Jones potentialparticularly prone to
poor behaviour during fitting, as they tend to go to zero orobee exceedingly
large. It is generally recommended that such terms are s&tl @éq a physically
sensible value (based on quantum mechanical estimateamispbility-based for-
mulae) and held fixed until everything else is refined.

A final check that the program looks for is that the total numifevariables
being fitted is less than the total number of observables!

3.0.31.2 Fitting energy surfaces

To fitan energy surface itis basically necessary to inpuhalktructures and the en-
ergies that correspond to them. To do this it is just a maftputiing one structure
after another in the input file (within the limit of the maximunumber of structures
for which the program is dimensioned). It is possible to f& gradients acting on
the atoms as well the energy of each structure, though oftetrthe energies are
fitted. If the latter is the case, then the easiest way to tifrthe fitting of the gra-
dients is to specifynof | ag as a keyword to prevent the program for looking for
gradient flags in the absence of a keyword to specify them.

Perhaps the only unique feature of fitting an energy surfadbe need to in-
clude an energy shift in some cases. This is a single additieegy term which is
the same for all structures and just moves the energy scaediplown. The justi-
fication for this is that often it is impossible to calculate energy that corresponds
exactly to the interatomic potential one from a quantum raedal calculation
[25]. Most commonly this arises where the potential model partial charges in
which case there is an unknown term in the lattice energy duenisation poten-
tials and electron affinities for fractions of an electron.

To simplify the specification of this shift value in the inpuft you give the
shi ft option after the first structure then this value will applyatb subsequent
structures until a different value is input. Similarly, iteagnitude can be altered by
using thevar i abl es sub-section to specify the shift as a variable and this will
apply to all structures. It is generally recommended thatdhift is fitted first and
allowed to fit through out the procedure.

3.0.31.3 Empirical fitting

An alternative to fitting quantum mechanical data to derivenderatomic potential

is to actually fit experimental data. In this case the prooederves two purposes.
Firstly, the degree to which all the data can be reproducedseeve as some guide
as to the physical correctness of the model used. Secon@igvides a means of
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extrapolation of experimental data for one system to a @ifieone where the data
may not be known, or alternatively to unknown propertieshef tame material.

Any of the properties that can be calculated for the bulkdsoli gas phase
molecule can also be used in reverse to fit a potential to. @isly the essential
ingredient in the fit is the experimental structure, withaiich you won’t get very
farl The conventional way to fit the structure is by requirthgt the forces on the
atoms are zero. This is clearly not a perfect strategy asuldcbe satisfied by a
transition state rather than a minimum, though in practiae rare, except when
symmetry constraints are imposed.

Normally a good fit requires some second derivative inforameas well as the
structure. For very high symmetry systems, such as rock thedtstructural data
alone is completely inadequate. If we imagine a potentiddeasg a binomial ex-
pansion about the experimental geometry, then unless 8teafid second deriva-
tives are reasonably well reproduced by our model then thgea@f applicability
will be almost zero. Typical sources of second derivatiierimation are elastic,
dielectric and piezoelectric (where applicable) constaAtso vibrational frequen-
cies contain far more information than any of the above. Hm@nethe fitting of
frequencies is not straightforward. To fit the frequency magles is certainly pos-
sible, however, you have no guarantee that the correct masi®déen fitted to the
correct eigenvalue. Hence, frequency fitting only tendsstoaeful from empirical
data for special cases, such as O-H stretching modes whaahiedr separated from
other modes and for diatomics where there is no problem iigassent!

One other case where frequency fitting can be useful is abtherlend of the
spectrum. For an isolated molecule or a solid aflitgoint the first three modes
should have zero frequency as they are just translationsonme cases there may
be imaginary modes due the potentials not correctly repodpthe true symmetry.
Hence by fitting the first three modes to be zero it is possiblericourage the
potentials to yield the correct symmetry.

3.0.31.4 Simultaneous fitting

There is one main difficulty in the conventional scheme fdmig in which the
forces on the atoms are minimised by variation of the posééprameters which
arises when using a shell model. Normally we don’t know winat $hell coor-
dinates are at the outset unless the ions are sited at cafitsggnmetry. In the
past people have tried fitting with the shells placed on tothefcores. However,
this means that the potentials are tuned to minimise theipat@on in the system
and leads to the shell model having only a small beneficiaicefflt also doubles
the number of observables connected with gradients, bytiotdoduces a small
number of extra variables thus making it harder to get a gdod fi

The solution to this problem is allow the shell positionsvolee in some way
during the fit. There are two possibilities - either we can imise the shell posi-
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tions at every point during the fit or we can added the shelldioates as fitting
parameters. In the case where only structural data is beitegl fihe two meth-
ods are equivalent except in the way that they evolve towtresanswer. When
other properties are included the second approach is nafystorrect, though the
difference is usually small.

After experimenting with several test cases it was foundtfasecond scheme
in which the shell coordinates become fitted variables wamfare stable in con-
vergence and more efficient. Hence this is the scheme thdidesadopted and
is referred to as 'simultaneous’ fitting due to the concurifting of shell posi-
tions. Whenever working with shell models it is recommentieat the keyword
si mul t aneous is added during conventional fitting - it can improve the sum o
squares by several orders of magnitude! Not only does tliierae apply to the
coordinates of shells, but also to the radii of breathindIslaes well.

3.0.31.5 Relaxfitting

It has been observed that sometimes in conventional fitetig an improved sum
of squares doesn’t always get you what is considered to béex logality fit. This
is because people often use different criteria to make fbdgement to the ones
input into the fitting process. In particular they look at thi#ference between the
optimised structural parameters and those from experipnatiter than looking at
the forces. The reason why the forces can be lower, but leadvimrse structure is
because in a harmonic approximation the displacementsisttiacture are given
by the gradient vector multiplied by the inverse hessiamddeif the gradients get
smaller but the inverse hessian gets much larger then thatisih may get worse.

The solution to this problem is to fit according to the crigdoy which the struc-
tures are judged - this is what relax fitting does. This mehasdt every point in
the fit the structure is optimised and the displacementseogtiuctural parameters
calculated instead of the gradients. In this approach tled stodel is naturally
handled correctly and so there is no need for simultanedusjfitThe downside is
that it is much more expensive in computer time than conweeatifitting. Also you
can only start a relax fit once you have a reasonable set offi@itparameters - i.e.
one which will give you a valid minimisation. Hence a convenal fit is often a
prerequisite for a relax fit.

There is a further benefit to using relax fitting. In a convendl fit the prop-
erties are calculated at the experimental structure ndymath non-zero gradients
which is not strictly correct. In a relax fit the propertieg aalculated for the opti-
mised structure where they are valid.
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3.0.32 Genetic algorithms

Conventional minimisation techniques based upon methaztsas Newton-Raphson
are excellent ways of locating local minima. However, they af limited use in
finding global minima. For example, if we know the chemicamgmsition of a
compound and its unit cell, but don’t know the structure tenwould want to
locate the most stable arrangement for placing the atonfemitihe unit cell. To
search systematically for a reasonable set of atomic coatels may take a very
long time by hand. Genetic algorithms [26] are a method byctvhve can search
for global minima rather than local minima, though there nawer be an guarantee
of finding a global minimum. In many respects it resembles tddarlo methods
for minima searching, though is regarded by some as being efécient.

The concept behind the method, as the name might suggestcasrly out a
'natural selection’ procedure within the program in the sanay that nature does
this in real life. We start off with an even numbered sampleasfdomly chosen
configurations. This is our trial set which is allowed to eshccording to a num-
ber of principles described below. Before we can do this wedrte consider how
to represent our data for each configuration. To do this we@meach number as
a binary string by dividing the range between the maximum @ndmum possi-
ble values (for example 1 and O for fractional coordinates) a series of intervals
where the number of such intervals is an integer power of 2esthis data repre-
sentation the system now evolves according to the followtegs:

(a) Reproduction (tournament) - pairs of configurations are chosen at random and
the parameters which measure the relative quality of theamgacompared (this is
the energy for genetic optimisation or the sum of squaregéoetic fitting). The
best configuration goes forward to the next iteration, ekteat there is a small
probability, which can be set, for the weaker configurationvin the tournament.
This process is repeated as many times as there are configusrad that the total
number remains constant.

(b) Crossover- a random point is chosen at which to split two binary strirefter
which the two segments are swapped over.

(c) Mutation - a random binary digit is switched to simulate genetic martet.
This can help to search for alternative local minima.

The default output from a genetic algorithm run is a given banof the final
configurations, where the ones with the best fitness critegaselected. However,
unless the run smoothly progresses to the region of a singieram it may be
more interesting to look at a sample of the best configuratioom the entire run.
This can be done with GULP using thest option.
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Genetic algorithms can only locate minima to within the fe8on allowed by
the discretisation used in the binary representation. A&y are very slow to
converge within the region of a minimum. Hence, the gendgorghm should be
used to coarsely locate the regions associated with minimi® global surface,
after which conventional Newton-Raphson methods will nedtiently pin-point
the precise minimum in each case.

107



3.1 Getting started

3.1.1 Running GULP

Under UNIX:
To run GULP on a machine with the UNIX operating system sinppe:

<directory>gulp < inputfile

where<di r ect or y> is the path name for the location of gulp on your machine,
or if the executable is in your current directory or lies iruy@ath then this may be
omitted. In this case the output will come to your termin&ydu wish to save it to
an output file then type

<directory>gulp < inputfile > outputfile

You may like to try using one of the example input files (cabsdmpleN, where N
is a number) to see what happens! Input may also be typedlgingto the program
line by line if no input file is specified. Having finished typiall the required input
just type ‘start’ to commence the run.

Under VMS/DCL:
The easiest approach to running GULP on a VAX is to create adiled GULP.COM
containing the following:

ASSI GN ' P1’ . GLP FORO05
ASSI GN ' P1’ . QUT FORO06
RUN GULP

DEASSI GN FOR005

DEASSI GN FORO06

To run a job then type:
@3ULP <l nputfile>

which willuse<I nput fi | e>. GLPas aninputfile and writgl nput fi | e>. QUT
as an output file.

3.1.2 Getting on-line help
To obtain on-line help on GULP type
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<di rectory>gul p <CR>
hel p <CR>

A list of all the possible help topics can then be accessed/pyngt opi cs
or alternatively just type the particular keyword or optithiat you require help on.
Only sufficient characters to specify a unique topic are iregu To finish with
help typest op if you wish to exit the program oqui t if you want to return to
interactive use.

If the help command fails to work it means that the path forldoation of the
file help.txt (which is an ordinary ASCII text file containirall the help informa-
tion) has not been set at compile time and that the file is nittaipresent directory
either.

An alternative way of accessing help is to generate an HTMt dging the
gulp2html utility (courtesy of Dr. Jorg-R. Hill) which prages a file help.html
which can then be inspected with a suitable browser, suclketasape.

3.1.3 Example input files

With the program you should have received a number of samplet ifiles which
illustrate how GULP works for a number of particular run tgp&hey also serve as
a test to ensure that the program works correctly on your imadigpe. Please note
that the interatomic potentials should not be taken as cbfoe general use - some
are made up for the purposes of demonstration only! Belowhsed description
of what each example file is doing.

Table 3.4: List of examples provided

examplel | optimises the structure of alumina to constant pressuretiaeml
calculates the properties at the final point

example2 | simultaneous fit of a shell model potential to the structurev-o
quartz, followed by an optimisation with the fitted poteltiathe
general potential is used with energy and gradient shiftste
Si-0O instead of the usual Buckingham potential

example3 | an electronegativity equalisation calculation is useddove par-
tial charges for quartz and are then used to calculate the gle
trostatic potential and electric field gradients at eacé sibond
lengths are also calculated

example4 | simultaneous fit of a shell model potential to La203 using| an
Ewald-style sum to evaluate the C6 terms, followed by an-qpti
misation with the production of a table comparing the ihidad
final structures at the end
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example5

example6
example7a

example7b

example8

example9

examplel0

examplell]

examplel?2
examplel3

examplel4
examplel5
examplel6
examplel7
examplel8
examplel9
example20
example2]l]
example22,
example23
example24
example25

calculation of a phonon dispersion curve for MgO from 0,&C
1/2,1/2,1/2 - note that normally the structure should benoiged
first and that although a phonon density of states curve dymned
this may not be accurate due to restricted sampling of k space
calculation of the defect energy for replacing a Mg2+ ion ig
by a Li+ ion to create a negatively charged defect

location of the transition state for a magnesium cation atigg to
a vacant cation site in MgO in a defect calculation

this shows an alternative way of obtaining the same resuih &
7a by starting the magnesium in a special position and usiag
resulting symmetry constraints to allow a ordinary miniatisn to
the saddle point

a molecular defect calculation in which a sulphate anioneis|
moved from BaSO4 - note that the use of thel e keyword to
Coulomb subtract within the sulphate anion.

an example of how to use a breathing shell model for MgO -
cluding fitting the model, optimising the structure and cédting
the properties

optimisation of urea showing how to handle intermoleculatep-
tials

an example of how to map out the potential energy surfacehi®
migration of a sodium cation parallel to the ¢ axis throughystal
of quartz with an aluminium defect using the translate aptio
optimisation of two structures within the same input file saall-
lustrates the use of the name option

shows how to use a library to access potentials for an opitnois
of corundum

relaxed fit to structure and properties

simple NVE molecular dynamics

example of constant pressure shell model MD

Sutton-Chen calculation for bulk Ni

example of shell model MD in NVT ensemble

shell model MD run for a zeolite with finite mass

shell model MD run for a zeolite with adiabatic algorithm
charged defect optimisation in a supercell

energy surface fit for a molecular crystal

evaluation of the cost function for a particular structure
example of structure prediction for polymorphs of TiO2

free energy minimisation of quartz within the ZSISA approg+

1S
y t

n-

[t

tion
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3.2 Guide to input

3.2.1 Format of input files

On the whole it is only necessary to use up to the first fouetstof any word,
unless this fails to specify a unique word, and the input iscase sensitive as all
characters are converted to lower case on being read in.

The first line of the input is the only special line and is re¢erto as the key-
word line. Keywords should all be given on this line. Thesesist of control words
which require no further parameters and generally speb#yasks to be performed
by the program. For example a typical keyword line would ltikk:

optim se conp properties phonon
or in abbreviated form:
opti conp prop phon

This combination of words tells GULP to do a constant pressyotimisation
and then to calculate the lattice properties and phonorteatjitimised geometry.
The order of words within the keyword line is not significant.

All subsequent lines can be given in any order unless thatrktates to a pre-
vious piece of input. Such lines contain ‘options’ which gelly also require the
specification of further information. This information caormally follow on the
same line or on the subsequent line. For example the pressine applied to a
structure could be input as either

pressure 10.0 or pressure
10.0

In many cases the units may also be specified if you don’t vasise the default:
pressure 1000 kbar

Any lines beginning with a ‘#" and anything that follows a ‘gart way through
a line is treated as a comment and as such is ignored by theapmnog

When performing runs with multiple structures any struetdependent options
are assumed to apply to the last structure given, or the figttsire if no structure
has yet been specified. Some options should be specified a®stitns of a par-
ticular option. For examplegl astic, sdlc, hfdlc, piezo, energy
andgr adi ent s all are sub sections of tr@bser vabl es command and should
appear as follows:
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observabl es
elastic 2
11542

3 3 49.8
hf dl ¢
112.9
end

Provided there is no ambiguity, GULP will accept these apieven ibbser vabl es
is omitted, however, it makes the input more readable if #atisn heading is in-
cluded.

GULP reads only the first 80 characters on a line in an input 8aould an
input line be two long to fit within this limit then the line cdre continued on a
second or further lines by adding the continuation chardéteto the end of the
line.

3.2.2 Atom names

Many parts of the input to GULP require the specification ohahames, be it when
giving their coordinates or when specifying potential paeders. The convention
adopted in GULP is that an atom should be referred to by itsvele symbol,
optionally followed by a number to distinguish differentcoerences of the same
element. Numbers between 1 and 999 are valid numbers. Heaogpées of valid
atom specifiers ar&i , Si 12, O3 andH387. Something likeSi 4+ would not
be a valid symbol. The reason for using the element symboécalbse several
calculations use elemental properties, such as the cdvadin, in dynamical or
molecular runs, respectively.

Sometimes it is desirable to label all the atoms in the stmectvith numbers
to identify them, but with the same interatomic potentialragzon them. To avoid
having to input the potential multiple times for each symth@re is a convention
within GULP which it is important to know. Any reference tesjian atomic symbol
applies to all occurrences of that element, whereas anyerafe to an atom type
with a number only applies to that specific species. For exam@Buckingham
potential specified as follows:

buck
Si core Ocore 1283.0 0.299 10.66 0.0 12.0

would apply to all Si atoms, regardless of whether they alled&i or Si 1 etc.
However, the following potential:
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buck
Sil core Ocore 1283.0 0.299 10.66 0.0 12.0

would only act onSi 1. It is important to remember this as people have labelled
one atomSi and theSi 1 in the past and put potentials for both which resulted in
twice the potential acting o8i 1 as there should have been. If the potential had
been specified as just acting 8nh then the correct answer would be obtained as it
would act on both atoms once.

In addition to the atom label there is optionally a specigetgpecifier which
should be one of the following:

core -represents the main part of an atom including all its mass
shel -represents the mass-less component in a shell model
bcor -acore, but with a spherical breathing radius

bshe - ashell, but with a spherical breathing radius

If not given, thercor e is the default type. Note that theeor andbshe types
only need to be used in the structure specification. Thee #fey can be treated
as an ordinary core or shell in the potential specificatiahthe program will select
whether the potential should act on the radius or the certieecspecies.

3.2.3 Input of structures

The structure for a three-dimensional solid requires tipaiirof three main sets of
information - the unit cell, the fractional coordinates agdes of the atoms, and
finally the space group symmetry. Taking these in order, thieaell can be input

either as the cell parameters:

cel |
4.212 4.212 4.212 90.0 90.0 90.0

or as the cell vectors:

vectors

4.212 0.000 0.000
0. 000 4. 212 0. 000
0. 000 0. 000 4.212

Normally it is easiest to use the cell parameter form andithiscommended.
The main reason why you might chose to use the cell vectoecigiuse you want to
calculate the properties in a non-standard reference f(gimen that quantities such
as the elastic constants depend on the unit cell orientagiatve to the Cartesian
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frame). If the cell parameters are input, then theell vector is aligned along the
x axis, theb cell vector in thery plane and the: cell vector in the generatyz
direction.

When GULP transposes a system between the primitive andeceanit cells
the orientation of the atoms is preserved so that any pragecalculated will be
the same regardless of the cell used. It is recommend thatethparameters be
used for input where possible as this ensures that symmatrpe used to acceler-
ate optimisations. Turning now to the internal coordinaitthe atoms, these can
again be given either in fractional or Cartesian form, thotlge former is the more
natural for a periodic system. Each line of input must caont&dileast the atom label
followed by the coordinates, in which ever units. For exaafpl the case of MgO:

fractional
My core 0.0 0.0 0.0
Ocore 0.5 0.5 0.5

Note that if the space group symmetry is to be given then iblg necessary to
specify the atoms of the asymmetric unit. Furthermore in @ses where a frac-
tional coordinate is a recurring decimal, such as 1/3, thesnecessary to specify
this value to six decimal places to be sure of it being recggphicorrectly as a
special position. If we were to include a shell model for osgghen the input of
coordinates would now look like the following:

fractional
My core 0.0 0.0 0.0
Ocore 0.5 0.5 0.5
O shel 0.5 0.5 0.5

There is no need to specify the number of atoms to be input @riinate the
section as this is automatically done when the program findsething which is
not an element symbol or a special character at the startiogéa |

In addition to the coordinates, there are a number of oplipa@meters which
can follow thez coordinate on the line. These are, in order, the charge,jthes
cupancy (which defaults to 1.0), the ion radius for a brewagtghell model (which
defaults to 0.0) and 3 flags to identify geometric variables={ vary, 0= fix).
Note that the flags will only be read if there is no keyword teafy the geometric
variables (e.g.conp or conv). Hence in full the input for MgO could look as
follows:

fracti onal

My core 0.0 0.0 0.0 2.00000 1.0 0.O O O O
Ocore 0.5 0.5 0.50.86902 1.0 0.00 00
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O shel 0.5 0.5 0.5 -2.86902 1.0 0.0 00 O

In the case of MgO all the flags can be set to 0 as there are nogjeonariables
within the unit cell by symmetry.

If we wanted to run a breathing shell calculation for MgO tlie& input might
look like the following for a constant pressure run:

fractional

My core 0.0 0.0 0.0 2.00000 1.0 0.0
Ocore 0.5 0.5 0.5 0.86902 1.0 0.0
O bshe 0.5 0.5 0.5 -2.86902 1.0 1.2

or for a mean field calculation of the energy of a 40/60 MgO/@a&erial:

fracti onal

My core 0.0 0.0 0.0 2.00000 0.4 0.0
Ca core 0.0 0.0 0.0 2.00000 0.6 0.0
Ocore 0.5 0.5 0.5 0.86902 1.0 0.0
O shel 0.5 0.5 0.5 -2.86902 1.0 0.0

The space group symmetry can be specified either througlpdoe group num-
ber or through the standard Hermann-Mauguin symbol. AgairMgO, either of
the following would be valid:

space or space
225 FM3M

In general it is better to use the symbol rather than the numbé¢he structure
may be in a non-standard setting. The help file contains distlbf the standard
symbols for each space group to illustrate how the symballgshioe written in the
input, though further non-standard settings will be acedpThespace option is
not compulsory in the input of a structure and if it is abs@ett GULP will assume
that the structure isin P 1 (i.e. no symmetry).

Related to thespace option is theor i gi n option which allows non-standard
origins to be handled. The input for this option can take thenfof a single integer
(1 or 2) if you want to select one of the standard alternativgim settings. Alter-
natively if three floating point numbers are input then theytaken to be an origin
shift in fractional coordinates, or if three integer nundbare input then they are
divided by 24 to obtain the shift.

The structural input for a molecular system is just the Gaare coordinates.
Currently the use of point group symmetry is unavailableisoiated systems so
there is no equivalent command $gpace for molecules. There is unlikely to
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be much benefit from the addition of point group symmetry astmoolecular
calculations are much faster than their solid state ana@egu

Multiple structures can be included in the same file by plgcine after another,
including mixtures of solid and molecular compounds. A utefption for keeping
track of different structures is theane option. This must precede the structure and
allows the user to give a one word name to the compound whittthen be used
as a label in the output file. Using this the structural injputs file containing both
corundum and quartz might look as follows:

nanme corundum

cel l

4.7602 4.7602 12.9933 90.0 90.0 120.0
frac

Al core 0.00000 0.0 0.35216

O core 0.30624 0.0 0.00000

space

167

name quartz

cell

4.91485 4.91485 5.40629 90.0 90.0 120.0
frac

Si core 0.4682 0.0000 0.333333

O core 0.4131 0.2661 0.213100

space

152

3.2.4 Species/ libraries

In the input for the coordinates there was the option to inpetspecies charge for
each individual atom in the asymmetric unit or even the fell.c Normally this
is unnecessary as all atoms of the same type have the sange charthis latter
case the charges can be assigned by the species option. &adolite structure,
for example, where there may be lots of different Si and Ossite could assign
charges as follows:

speci es

Si core 4.00000
O core 0.86902

O shel -2.86902

The species command can also serve another purpose whachssign poten-
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tial library symbols to each atom type. Quite often we maywdate a whole series
of materials with a standard set of potentials. Rather tijpimg them in every time
we can call a library. GULP comes with several libraries,lsas one for zeolite
and aluminophosphate type systems [3,28,29] and one faal rogides from the
work of Bush et al [30]. For organics, support is now offeredthe Dreiding force
field, though the user needs to perform the atom typing. Alineed to do to call
these potentials is to assign the potential types to thestypthe library files. In the
case of bush.lib, there is no need to do anything as the syapeljust the metal
element symbols. For the zeolitic materials there is moaa tbne kind of some
atom types and so an assignment is needed. Using this ounuapld look like:

speci es

Si core Si

O core O O2-

O shel O -
library catlow. lib

3.2.5 Input of potentials

The various types of potentials available in GULP have babnlated earlier and
detailed descriptions of the input format for each one cafobed in the on-line
help. This section will therefore just contain some genpahters as to how to
input potentials.

Let us take the example of a Buckingham potential which aet&é&en magne-
sium cores and oxygen shells with the parameters A=1280 8«\/300A, C=4.5
eVAS and acts over the range of 0 to 12 A. The input for this wouldklas follows
for an optimisation run:

buck
My core O shel 1280.0 0.3 4.5 0.0 12.0

If we want to perform a fitting run then it is also necessaryfdedfy the flags
which indicate which parameters are to be variables (1) amdiwones are not (0).
There is one flag for each potential parameter and the ord#reoflags matches
that of the parameters. Hence a fit in which we want to vary Ay evduld look as
follows:

buck
My core O shel 1280.0 0.3 4.5 0.012.01 00

It would not matter if we had put the flags on the end of the Iméhie input
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for an optimisation run - they would have just been ignoredr most potential
types some parameters are optional and can be omitted, Ipnvigen they are
zero. There is always a hierarchy to the order of omissioratiies. For example,
for most two-body potentials if one number is missing thes th assumed to be
the minimum cut-off radius and this value is zero (as it qodenmonly is). For a
Buckingham potential, if a second number is omitted themithassumed to be the
C term which again is often zero. If you are going to omit valuies important to
remove the flags when not needed from the input as this maysemhatters. If in
doubt give all values!

The number of input parameters can also vary according taatigns speci-
fied after the potential type. For example, if we wanted thevalpotential to only
act between atoms which are bonded then the input would be:

buck bond
My core O shel 1280.0 0.3 4.5

No potential cut-offs are needed as these are set by theHatthe atoms
must be bonded. Similarly for a Lennard-Jones potentialnndieen ad ennar d
conbi ne then no potential parameters will appear on the input linthase are
determined by combination rules.

More than one potential can be specified for each occurrehtigeqotential
type. Hence the following would be perfectly valid:

buck
My core O shel 1280.0 0.3 4.5 0.0 12.0
Ca core O shel 1420.0 0.3 6.3 0.0 10.0

If the input for one potential is too long to fit on one line themay be continued
on to the next line by using the continuation character ‘&fra end of the line.

For two-body potentials there is no ambiguity about the oaféhe atoms as
both are equivalent. For some three-body potentials anfbattbody potentials
it is important to be aware of the convention regarding théeoiwof input. For a
three-body potential which has a unique pivot atom, typycal which the angle is
measured, then this pivot atom must be given first and thetwitbéerminal atoms
in any order. Hence the O-Si-O angle bending term widely @igezeolites is input
as:

t hree
Si core O shel Oshel 2.09 109.5 1.9 1.9 3.6

In the case of four-body terms there is no unique pivot anchsoatoms are
input in the order which they are connected. A piece of goodcadis that three-
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and four-body terms are often most readily dealt with usimignectivity based cut-
offs as part of the molecule set of options.

3.2.6 Defects

In this section we shall cover the basic input required tdgrer a Mott-Littleton
calculation for an isolated defect in an otherwise perfettisas activated by the
presence of the keywordef ect . The main run type that we will be concerned
with for defects is optimisation as we normally wish to ohttie defect energy and
structure. We may also wish to locate transition statesHembigration of defects
- this follows the same approach as an optimisation, but thighkeywordt r ans
rather tharopt i . There is currently no facility to fit to defect quantities.

The first issue to consider is the bulk calculation that must@de a defect
calculation. For a correct calculation the bulk structurgsirbe optimised at least to
constant volume otherwise negative defect energies mait fesm the removal of
bulk forces, rather than defect related ones. If you intengetrform several defect
calculations and the bulk unit cell is a reasonable size geissible to optimise
the bulk as a first job and then use the restart file for the defalculations to
avoid wasted effort. There are also other reasons for optngithe bulk separately.
Firstly, if you want to perform a transition state run thee thr ans keyword will
try to be applied to the bulk as well as the defect with straregailts (this can
avoid by using thédul k_noopt keyword). Secondly, when creating defects it is
important to know where the bulk atoms are so that they carldoeg correctly.

At the end of the bulk calculation a property evaluation maesperformed as
the second derivatives and dielectric constants are ndeddide response tensors
of region 2. This is automatically invoked and there is nodhteeadd the keyword
property. Again for some materials the calculation of the propertias be
expensive. Hence, if multiple defect calculations are tpddormed then this step
can be minimised by adding the keywadve to the first run (which will write
out a temporary file fort.44 which contains the quantitiesdesl for future runs in
a binary form to save space) and the keywoest or e to subsequent runs (which
will cause them to read in the information from fort.44 rattiean re-calculating
it).

Having dealt with the preliminaries, we are now ready to adershow to input
the details of the defect calculation. Remember, the fallgweommands should
appear after the structure to which they refer. Firstly, veedto determine the
defect centre around which the regions are based. This engiging the option
cent r e (cent er will also work for the benefit of those of you who are American-
minded!). The defect centre is normally placed at the sanséipo as the defect,
in the case of a single defect site, or at the middle of a sefiekefects so as to
maximise the distance between any defect and the region ddaoyi Symmetry
is not explicitly input by the user for a defect calculatidrgwever, the program
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will automatically try to search for any simple symmetryralents. These can then
be used to accelerate the calculation. In order to do thesjiires that the defect
centre is chosen so as to maximise the point group symmetwytatself. This is
worth keeping in mind when choosing the location of the deéantre. A gen-
eral feature of theent r e option, and those which specify the positions of defect
species, is that there are a number of alternative methodpéeifying the location:
(a) Atom symbol: this is the label for a species within the unit cell. It is tiesuse
a unique specifier (by changing the type number of one atomcéssary) - if there
is ambiguity the program will normally chose the first oceuntce of the symbol.
centre My2 core

This will place the defect centre at the final bulk positiortted Mg2 core.

(b) Atom number : here the position is given by the number of the atom in the
asymmetric unit as input.

centre 3

This will place the defect centre at the final bulk positiortled third atom in the
asymmetric unit.

(c) Fractional coordinates: here the position is explicitly given in fractional units
- thef r ac option in the following command is optional as it is the ddfau

centre frac 0.25 0.25 0.25

(d) Cartesian coordinates:here the position is explicitly given in Cartesian coor-
dinates, the origin of the unit cell being at 0,0,0:

centre cart 1.5 2.4 0.8

(e) Molecule number: this places the defect centre at the middle of the molecule
whose number is given (which corresponds to that in the dutpu

centre nol 2

Having located the defect centre the next thing we need te tiogpecify the region
1 and region 2a radii. This is done with teeze command:

size 4.0 10.0
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would result in a region 1 radius of 4.0 A and a region 2a radiul0.0 A. It is im-
portant to check how sensitive the defect energy is to thakees and to increase
them until satisfactory convergence is achieved. One waloofg this while min-
imising computational expense is by using the restart filarel wanted to restart a
defect calculation run with the above radii, but with regioimcreased to 6.0 A and
region 2ato 12.0 A then we would just need to edit the restartdicontain the new
values, plus the old region 1 size (needed for correct rzsggiat the end of the line:

size 6.0 12.0 4.0

We now have specified the regions - next we need to create seieetsl There
are three options for this:

vacancy - removes an ion from the structure to infinity
interstitial - insertsanion into the structure from infinity
inpurity - replaces one ion with a different one

The last one, an impurity, is obviously just a short-cut carabon of the other two.
The actual input for each option for specifying the ion(sjoived follows that for
centr e in that the atom label, atom number, fractional or Cartes@ordinates
can be used. The molecule number can also be used with thecyaoption, in
which case it removes all the atoms of the molecule from thecire (see exam-
ple8). Note that when molecules are removed and insertedntportant to correct
the defect energy for the molecule at infinity, if this is net@, as this is not done
automatically.

An important part of the interstitial and impurity commarnidgo specify the
type of species to be inserted. For example, the impurityrnand to replac&?
with S would be:

impurity S Q2

The key thing to note is that the inserting species is alwagsified first. To
make life easy shells are handled automatically in mostscese if bothO2 andS
were specified as shell model atoms then the above commarid vesnove both
the O2 core and shell, and also insert the S core and shdihliyiat the same
position). It becomes important when introducing speciéh & type different to
any of the bulk species that all the necessary propertidseahserting ion are given
in thespeci es option otherwise the atom will be assumed to have no charge an
no shell.

There is one further option when introducing an interdtitamake life easier.
For example, imagine we want to protonate an oxygen (tylyicah zeolite frame-
work) to generate a hydroxyl group at O2. This can be readilyjeved using the
bond option:
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interstitial H bond O2

this will place the H into the structure at the sum of the cemaladii from O2. To
determine the direction for the bond the program maximisesngles to any other
atoms to which O2 has bonds.

Putting all these keywords together, we shall illustratev faolithium impurity
could be created in magnesium oxide to generate a negatikalged defect. For
the purposes of this example we will work with the full unitlcructure as given
by the following:

opti conp defect

cel l

4.212 4.212 4.212 90.0 90.0 90.0
frac

My core 0.0 0.0 O.
My core 0.0 0.5 O.
Myl core 0.5 0.0 0.5
My core 0.5 0.5 0.0

00.0
50.5

Ocore 0.5 0.5 0.5
Ocore 0.5 0.0 0.0
Ocore 0.0 0.5 0.0
Ocore 0.0 0.0 0.5
speci es

My core 2.0

O core -2.0

Li core 1.0

Based on the above basic input (+ interatomic potentials)hal following
would be valid ways of creating the defect:

(a)

centre Myl

size 6.0 12.0

vacancy Myl

interstitial Li 0.5 0.0 0.5

(b)
centre Myl
size 6.0 12.0

inmpurity Li Myl

122



(c)

centre 0.5 0.0 0.5

size 6 12

inpurity Li 0.5 0.0 0.5

(d)

centre 3

size 6 12

inmpurity Li cart 2.106 0.0 2.106

There are more permutations than this, but hopefully itgieu the general idea.

3.2.7 Restarting jobs

Because on the whole GULP doesn't require very much CPU tenstep (the ex-
ceptions normally being second derivative calculationtaoge systems) it doesn’t
maintain a binary dumpfile with all the details for a restaanm exactly where it
left off. Instead there is the option to dump out a restartvilgch is just a copy
of the original input (slightly rearranged!) but with anyardinates or potential
parameters updated as the run progresses. The frequertrcwhitth this is written
out can be controlled by the user. If the following is spedifie

dunp every 4 gulp.res

then a restart file will be written after every 4 cycles. If tdéis omitted then it
defaults to being one - i.e. a dumpfile is written after evergle. As the cost of
writing out this file is normally small compared to the costaotycle this is the
usual choice. If theevery option is omitted then the restart file is written just at
the end of the run.

3.2.8 Memory management

Unlike previous versions of GULP, the code is now written ortFan90 and there-
fore pretty much all memory is dynamically allocated. Hettoere should rarely
be any need to alter the code to increase a parameter. Thenamhyparameter in
the code is the number of elements, which is set to 107 by Hefauhe event that
you wish to study elements further down the periodic tabéntthis, you need to
edit this value, add the appropriate element data and reit®@mp

Even though the code is fully dynamic, you can still exhabst memory of
your computer under certain circumstances. Remember tlyatuss that require
the analytic second derivatives, such as phonons or NeR&phson optimisation,
will cause a memory requirement of roughjy(3.V + 6)*double precision words.
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Hence if you run out of memory or the machine starts swappmg should first

of all try to reduce the memory demands by using an optimasagigorithm that

doesn’t require full second derivatives, such as unit-kdesbased BFGS, limited
memory BFGS or conjugate gradients.
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3.2.9 Summary of keywords

The following is a concise summary of all the valid keyworgaikable in GULP -
for more detail consult the on-line help.

Table 3.5: Valid keywords in GULP

angl e calculate valid three body angles

anneal perform simulated annealing

aver age output average bond lengths

bond calculate valid bond lengths based on covalent
radii

br eat he only calculate gradients for breathing shell radij

br oaden_dos apply Lorenzian broadening to density of states
data

bul k_noopt fix bulk structure prior to a defect calculation

c6 calculate C6 terms using lattice sum method

cartesian output Cartesian coordinates for initial structure

cellonly only calculate gradients for and optimise cell pa-
rameters

cmm calculate cluster electrostatics using cell multipple
method

conpare produce a table comparing the initial and final ge-
ometries

conj ugat e use conjugate gradients

conp perform constant pressure calculation - cell|to
vary

conserved output conserved quantity during MD

conv perform constant volume calculation - hold cell
fixed

cost perform cost function calculation

dchar ge output the first derivatives of the atomic charges

debug output debugging information

def ect perform a defect calculation after bulk calculatipn

df p use Davidon-Fletcher-Powell update rather than
BFGS

di pol e add the dipole correction energy for the unit ce|l

di st ance calculate interatomic distances

eem calculate charges using electronegativity equaljsa-
tion

efg calculate the electric field gradients

ei genvectors write out eigenvectors for phonons/frequencies

f bf gs use fitting BFGS with the full numerical Hessian
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fit
fix_nol ecul e

free_energy

frequency
full
gear

genetic
gl obal

gradi ents

hessi an
hexagonal

hill
intensity

i sotropic
kful |

| bf gs

I'i bdunmp

| i bff

linmn

| ower _sym

mar vi nSE

nd

m ni mum_i mage
nol ecul e

nmol mec

nol g

nont ecarl o
noani sot ropi c

nobr eat he
nod2sym

perform a fitting run

fix connectivity for molecules at start and do n
update

perform a free energy instead of internal ene
calc

calculate defect frequencies

write out structure as full rather than primitive ce

use the Gear fifth order algorithm for molecul
dynamics
perform a genetic algorithm run

after global optimisation, dump out restart file b
fore opt

perform a single point calculation of energy a
gradients

output hessian matrix

write out structure as hexagonal rather than rhg
bohedral

specifies that the Hill convention for the bu
modulusbe used

calculate IR intensities for phonon/vibration
modes

allow cell parameters to vary isotropically

use the reciprocal space of the full cell

use limited memory BFGS

causes library symbols to be dumped to a res
file

enables reading of fitting flags from a library file

output details of line minimisation
try to lower the symmetry using imaginary mod
use the Marvin definition of the surface energy
perform a molecular dynamics run
use the minimum image convention during MD

locate molecules and coulomb subtract withi

them

locate molecules and coulomb subtract 1-2 ang
3

locate molecules for intramolecular potentiz
only

perform a Monte Carlo calculation

use isotropic formula for region 2b energy
freeze breathing shell radii during optimisation
do not use symmetry for second derivatives
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nodpsym

noel ectrostatics
noener gy
noexcl ude
nodensity
nodpsym
nodsymretry
nofirst_point
nof | ags

nof r equency
nokpoi nts
noksymetry
nol i st_nd
nonodcoor d
nononanal

nor eal

nor eci p

nor epul si ve

nosderv
nosymet ry

nozer opt
nundi ag
ol del astic
ol dunits

operators

do not use symmetry for defect potential calcula-

tion

turns off Ewald sum even when charges are

present

do not calculate the energy - useful for debugg
datasets

do not use atom freezing algorithm during optin
sation

do not output density of state plot after phon
calculation

output potential for all sites rather than asymm
ric unit of defect

do not use symmetry during a defect calculation

skip first point in a translate run

ng

—
1

on

et-

no variable flags are present and all variables to be

excluded

do not print out frequencies at each k point

do not print out k point list

do not use Patterson symmetry in Brillouin zon
do not use list method for 3- and 4-body terms
MD

n

do not wrap coordinates back into the central ynit

cell

turns off the non-analytic correction to the

phonons at gamma
exclude all real space two-body interactions

exclude all reciprocal space two-body interactions

do not use truncate repulsive terms based
Ewald accuracy
do not use symmetry for gradient calculations

on

turn after symmetry once unit cell has been gener-

ated
exclude zero point energy from free energy cal
lation

CU-

estimate on-diagonal hessian elements numeri-

cally

turn off correction for elastic constants at finite

strain

specifies that the use of GPa for elastic const:
should be turned off

print out listing of symmetry operators used

127

ANts




optim se

out con
phonon

positive
pot

potgrid
predi ct
property
geq

gok
regi 2a
regi _before

rel ax
restore

rfo
save
shel |

si mul t aneous
singl e

sm

spati al

static_first
t orsi on
transition_state

unit

verl et
voi ght

zeropotenti al
zsi sa

minimise the energy with respect to geometrical

variables
output constraints in restart file

calculate the lattice phonon modes and cluster fre-

guencies

force hessian to remain positive on the diagona

calculate the electrostatic potential at the atomic

sites

calculate the electrostatic potential over a grid
perform structure prediction calculation
calculate the bulk lattice properties

calculate charges using the QEq scheme of Rs
and Goddard

its OK to run with a non-charge neutral unit cel
output region 2a

output region 1 coordinates before defect calcy
tion

use relax fitting
read in defect calculation restart info and sk
property calcn

use the rational function optimisation method
write out defect calculation restart information
only calculate gradients for and optimise shell j
sitions

simultaneously optimise shells while fitting
perform a single point calculation of the energy
use the Streitz-Mintmire charge scheme
invokes the use of linear-scaling spatial decom
sition algorithms

perform a static optimisation before a free ener

one
calculate valid four body torsion angles
optimise using RFO to first order transition stat
use a unit matrix as the initial hessian for optin
sation

use the Verlet algorithm for molecular dynamic
specifies that the Voight convention for the by
modulusbe used

set the average potential across lattice sites to
use the ZSISA approximation in a free ener

ppe

Ia-

L

P

DO-

Ik

7Ero
gy

minimisation

128



3.2.9.1 Groups of keywords by use

(a) Control of calculation type

angl e, anneal, bond, cost, defect, distance, eem

efg, fit, free_energy, genetic, gradients, nd,

nmont ecarl o, noenergy, optim se, pot, predict, property,
phonon, geq, single, sm static_first, torsion,
transition_state

(b) Geometric variable specification
br eat he, bul k_noopt, cellonly, conp, conv, isotropic,
nobr eat he, nofl ags, shell

(c) Algorithm

c6, dipole, fbfgs, fix_nolecule, full, hill, kfull,
mar vi nSE, m ni nrum_i mage, nol ecul e, nol nec, nol q,
newda, noani sotropic_2b, nod2sym nodsymetry,

noel ectrostatics, noexclude, nofirst_point,
noksymretry, nolist_nd, nononanal, noreal, norecip,
nor epul si ve, nosderv, nozeropt, qok, relax, spatial,
storevectors, nonol ecul arinternal ke, voi ght, zsisa

(d) Optimisation method
conjugate, dfp, |bfgs, nundiag, positive, rfo, unit

(e) Output control

aver age, broaden_dos, cartesian, conpare, conserved,
dcharge, debug, eigenvectors, global, hessian,
hexagonal , intensity, |ibdunp, linmn, nodensity_out,
nodpsym nofirst_point, nofrequency, nokpoints,
operators, outcon, regi2a, regi _before, restore, save

(f) Structure control
full, hexagonal, |ower_symmetry, nosymetry

(9) Miscellaneous
i bff, nonbdcoord, oldelastic, oldunits, zeropotenti al

3.2.9.2 Summary of options

The following is a concise summary of all the valid optionaiéable in GULP - for
more detail consult the on-line help.

Table 3.6: Valid options in GULP
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14 scal e

absol ut e_coordi nat es
accel erations
accuracy

at omab

axilrod-teller
best

bacr oss
bcoscr oss
bcross

boattracti ve
bochar ge

bor epul si ve
bosel f ener gy
bot wobody
bor nq

bot h

box

br enner
br oaden_dos
bsm

buck4
bucki ngham
bul k_nodul us

cartesi an
cel |
centre
char ge
cmm

configurations

specifies the 1-4 scaling factor for molecular me-

chanics

inputs the absolute Cartesian coordinates
inputs accelerations for MD (restart)
specifies the accuracy of the Ewald summatior
specifies the one-centre A and B terms for com
nation rules

specifies an Axilrod-Teller three-body potential
output best N configurations from genetic alg
rithm run

inputs a bond-angle cross potential

specifies a bond-bond cross term with cosine fq
specifies a bond-bond cross term three-body
tential

specifies attractive bond-order parameters
controls the charge tapering in Jiang-Brov
model

specifies repulsive bond-order parameters
specifies self-energy term for Jiang-Brown mog
inputs bond-order two-body model parameters
specify Born effective charges for fitting

all subsequent potentials are both inter- and in
molecular

specify box size/number for dispersion and D(
plots

use the brenner REBO potential

alters the default DOS broadening factor
specifies radial parameters for a breathing s
model

specifies a four range Buckingham potential
specifies a Buckingham potential

gives the experimental bulk modulus for fittir
(cubic only)

input crystal structure using Cartesian coording
input unit cell as a, b, c, alpha, beta, gamma
specifies location of defect centre

vary specified atomic charges during fitting
selects cell multipole method for Coulomb terr
and order

controls the number of configurations in gene
algorithm
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connect
constrain

contents

cosh-spring
cost

coul onb
coval ent
covexp
crossover

current _tine
cutd

cutp

cuts

cv

caver
cfaver

cvec

danped_di spersi on
def i st

del f

del ayforce
delta

dhkl
di screte

di spersion
ditto
dmaxi mum

dm ni nmum

dunmp
eam al | oy

eam density

forces a bond between specific atoms

input constraints between variables (fitting and

optimisation)

specifies the unit cell contents for structure p
diction

inputs a cosh form of the spring potential

set the parameters for the cost function
specifies a coulomb subtraction potential
specifies the covalent radii for an element
specifies the covalent-exponential potential
specifies the crossover probability in the gene
algorithm

specifies the current time in an MD restart
cutoff for distance calculation

overall interatomic potential cutoff

core-shell cutoff distance

specifies the constant volume heat capacity for
ting

gives cell average information for MD restart
gives constraint force information for MD restat
gives cell vectors for MD restart

C6 and C8 potentials with short range damping
input defect species list for restart

maximum energy change before hessian is re
culated

delays the start of the external force in MD
specifies the differencing interval for numerig
gradients

specifies the depth of the growth slice
specifies the discretisation interval for the geng
algorithm

produces phonon dispersion curves

creates a copy of the previous configuration
controls maximum of coordinate range in gene
algorithms

controls minimum of coordinate range in gene
algorithms

write out a dumpfile for restarts

inputs a scaling parameter for alloys in the EA
method

specifies the form and parameters for the Emb

re-

btic

fit-

—~F

)

cal

al

btic

tic

i

c

M

ed-

ded Atom density
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eam functi onal

eam potential _shift
ei nstein

el astic

el ectroneg

el enent

endf orce

ener gy
ensenbl e
ent r opy
epsi |l on/ si gma
equat ori al

equi libriation

er ongi

exponenti al
external force
ewal dr eal r adi us

factor

ferm-dirac
finite

fractional

frequency

ftol
gamra_di recti on_of _appr
ganme_angul ar _st eps
gcnctspeci es

gcnecnol ecul e

gdcrit

gener al
genetic

gexp
gmax

gradi ents

specifies the functional form of the Embedd

Atom Method

specifies two-body shift of EAM potential energ

species an Einstein model potential

specifies elastic constant values for fitting

input new parameters for electronegativity equs

sation

opens the element parameter options section

terminates the external force in MD

specifies the lattice energy for fitting

selects either the NVE or NVT ensemble for M

specifies the entropy for fitting

specifies the one-centrér for combination rules

inputs an equatorial potential

length of equilibriation period in a molecular dy

namics run

closes a block of input to be ignored

specifies an exponential three-body potential

specifies an external force

tailors the Ewald sum to have a specific real sp

radius

temperature reduction factor for simulated anng

ing

input for potential with Fermi-Dirac form

use finite differences to evaluate numerical deri

tives

input crystal structure using fractional coordinal

input frequencies as fitting observables

specifies the function tolerance for optimisatior
odicdction for non-analytic correction

controls averaging of non-analytic correction

inputs species details for GCMC

inputs molecule details for GCMC

controls change from energy to force balance i

defect calculation

specifies a general interatomic potential
general option for genetic algorithm sub-option
specifies expotential weights for genetic alg
rithms

controls maximum individual gradient in an opt

misation

ed

y

ali-

ace

hal-

va-

es

NS

JO-

specifies gradients that are to be used in fitting
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grid

gt ol

har noni ¢
hf dl c

hfrefractive
hi gh-fq

hydr ogen- bond
I gauss
I gnor e

i mpurity

i nt egrat or

i nt er nol ecul ar
interstitial

i nt ranol ecul ar
i nver si on

i oni c
iterations
keywor d

kpoi nts

| bf gs_order

| ennard
l'ibrary

lin3

l'ine

| j buf fered
| owest node
manybody
mar vi n

mass

maxcyc
maxi m se

specifies the grid for genetic algorithms
specifies the gradient tolerance for optimisatiol
specifies an harmonic potential

specifies high frequency dielectric constants
fitting

specifies the high frequency refractive index 1
fitting

specifies a high frequency dielectric constant
fitting

nput a three-body hydrogen-bond potential
inputs an inverse Gaussian potential

tells the program to ignore input until "erongi'
found

replace one ion by another for a defect calculat
specifies MD integrator algorithm to use

all subsequent potentials are intermolecular on
insert an interstitial for a defect calculation

all subsequent potentials are intramolecular on
inputs an inversion potential

specifies the ionic radii for an element
specifies that the number of cycles of shell of
misation in MD

allows the input of keywords on any line
specify explicit k points for phonon calculation
controls the order of the limited-memory BFG
algorithm

specifies a Lennard-Jones potential

specifies a file containing a library of interatom
potentials

specifies parameters for the ESFF linear thr
body potential

maximum number of points in a line minimisatic
inputs buffered Lennard-Jones potential

sets the lowest and highest modes to be inclu
in the free energy

specifies that a manybody potential should act
tween two atoms

input commands to be passed through to a Ma
run

specifies the atomic mass for a species
specifies the maximum number of cycles

specifies the order of the stationary point for RF
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maxi mum

ncchem cal potenti al
ncereate

ncdest r oy

ncmaxdi spl acenent

ncnmaxr ot ati on
ncneans

ncnove
ncout freq
ncrot at e
ncsanpl e

ncst ep

nctrial

ncvol une

ndar chi ve
ndconst r ai nt

m ncel |

m ni num

node2a
noment um corr ect
nonopol eq

nor se
nove 2a to_1

murrell -nottram
mut ati on

nane
nobond

observabl es
odi recti on

omega
onega_danpi ng

out of pl ane
origin
out put

upper bound for genetic algorithm parameters
specifies the chemical potential for GCMC
controls the creation probability for GCMC
controls the destruction probability for GCMC
controls the maxmimum step size for translati
in MC

controls the maximum step size for rotation in M
gives the mean value of quantities from MC fj
restarting

controls the probability of a trial move in MC
controls the output frequency for MC

controls the probability of a trial rotation in MC
controls the sampling frequency for MC

gives the number of Monte Carlo steps so far
controls the number of trial Monte Carlo steps
specifies the volume for use in GCMC
specifies the name for an MD archive file
constrains the distance between 2 atoms in MI
traps if the cell parameter falls below this value
lower bound for genetic algorithm parameters
allows the user to chose how region 2a is treatt
controls momentum correction during MD
specifies a target charge for fitting

specifies a Morse potential

after a defect calc region 2a ions are moved to
gion 1

species parameters for the Murrell-Mottram
body potential

specifies the mutation probability in the geneti

algorithm

give a one-word name to a structure

excludes bond formation between species
molecule run

opens the observables option section
specifies input/output directions for phonon prg
erties
controls range for frequency dependent proper
damps the frequency dependent proper
through broadening

out of plane distance four-body potential

gives the origin setting number or explicit origir]

on

C
or

p_

fies
ties

creates dumpfiles for input to other programs
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pcel |
pfractional

pi ezo

pol ynom al
pot enti al
potgrid

potsites
pressure
producti on

proj ect _dos
pvectors

gel ectronegativity

gegi ter
geqgr adi us

geqt ol
gerfc

goverr2
qt aper
gwol f
region_1
rel def
rspeed
rtol

rydberg
ryckaert

sanpl e
sbul kener gy

input cell parameter for 1-D system (polymer)
input mixed fractional/Cartesian coordinates 1
1-D system

specifies the piezoelectric constants for fitting
specifies a polynomial potential

inputs electrostatic potential at a point for fitting

specifies a grid of points at which to calculate 1
potential

or

he

specifies sites at which to calculation the potential

specifies the applied external pressure
controls the length of the production time for M
run

generate projected densities of states

input 1-D cell vector (polymer)

inputs parameters for QEq method

specifies maximum number of iterations for QE

charges

D

I
O

sets the radius at which two-centre integrals

switch to 1/r

tolerance for convergance of QEq charges for H

specifies that an erfc screened Coulomb te
should be used

specifies a Coulomb potential based on the inve
distance squared

tapers Coulomb term at short range to a cons
value

species the parameter to calculate the Coulg
energy with a Wolf sum
explicit specification of region ions for defect ca
culation

maps defect region 1 atoms to perfect ones
restarting

controls the balance between real and reciprg
space
specifies the bond length tolerance for molec
generation

specifies the parameters for a Rydberg potenti
specifies a Ryckaert-Bellemans four-body pot
tial

controls sampling frequency during an MD run

specifies the bulk energy for use in a surface ¢

ms

erse

tant

mb

-

for

pcal

ule

al

en-

al-

culation
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scal e

scel |
scnmaxsear ch

sdl ¢
seed
sfracti onal

shear _nodul us
shel | mass
shift

shri nk

si ze

sl ower
snmel ectronegativity

Spacegr oup
speci es

spline

split

spring

squar edhar noni c
srefractive
sshift

start

static
st epnx
stop
stress
super cel
svectors
sSwW2
swW2j b

SW3

specifies scaling factor for vectors and Cartes
coordinates

input cell parameters for 2-D system (surface)
sets maximum search range for many body pot
tials in FEM

specifies static dielectric constants for fitting
specifies seed for random number generator
input mixed fractional/Cartesian coordinates 1
2-D system

specifies the shear modulus for fitting (cubic cz
only)
specifies the proportion of atoms mass for |
shell in MD
adds an offset to the energy for fitting energy I
persurfaces
specify shrinking factors for Brillouin zone inte
gration

specifies the sizes of regions 1 and 2a for a de
calculation

controls the step size for the lower keyword
inputs parameters for Streitz-Mintmire char
calc

gives either the space group number or symbo
specifies the charges for all atomic species
specifies spline potential and splining data
vary specified core-shell charge split during fitti
specifies core-shell spring constant

inputs a squared harmonic potential

specifies the static refractive index for fitting
scales the shift value for the current configurati
tells the program to ignore the remaining ing
and to begin

specifies the static dielectric constant for fitting
controls the maximum step during a minimisati
tells the program to stop executing immediately
input stresses for fitting

creates a supercell

input 2-D cell vectors

specifies a Stillinger-Weber two-body potential
specifies a sw2 potential with a Jiang-Brown mg
ification
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specifies a Stillinger-Weber three-body potenti
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sw3j b
swtch_mnim

synbol
symetry_cel |

synmmet ry_oper at or
td_external force

t enper at ure

terse

t hree
time

ti mestep
title
torangl e

t orexp
torharm
tortaper
torsion

t ot al ener gy
t our nanent

t pxo
transl ate

tscal e

t suneyuki
ttol

unfreeze
uni que

updat e

urey- bradl ey
vacancy

vari abl es
vectors

vel ocities
wei ght

specifies a sw3 potential with a Jiang-Brown mod-

ification

changes the minimiser according to a given cr
ria

changes element symbol from those in eledata
manual input of cell symmetry type

manual input of space group operator
specifies a time dependent external force in Ml
specifies temperature for thermodynamic prog
ties and MD

suppresses the level of output

specifies a three-body potential

places a limit on the run time for the job
controls the timestep in a molecular dynamics 1
inputs title lines for a job

inputs a torsion-angle cross potential

inputs a torsional potential with exponential deg
inputs a harmonic torsional potential
inputs a torsional potential with tapering of cutof
specifies a four-body potential

gives the total energy of the bulk for restart
defines the tournament probability for the gene
algorithm
species two point crossover in genetic algorithr
scans a potential energy surface by translat
atoms
controls the temperature scaling in a molecu
dynamics run

input for tsuneyuki potential
specifies minimum temperature for simulated ¢
nealing

sets optimisation flags to 1 within a spherical
gion

sets cost function difference for structures to
unique

sets the maximum number of hessian updates
specifies a Urey-Bradley three-body potential
creates a vacancy for a defect calculation
opens the variables option section

input lattice vectors to define unit cell

inputs for velocites for MD (restart)

U

er-

un

ay

tic

ms
ng

ar

re-

be

changes the weights of observables in fitting
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wite controls the frequency of writing for the M

dumpfile
xout of pl ane input a cross-out of plane six-body potential
xt ol controls the parameter tolerance in optimisatio

3.3 Guide to output

3.3.1 Main output

Hopefully, if you understand what has gone into the inputtf@ calculation the
output will be largely self-explanatory! Hence this sentwill give only a few
brief pointers as to the nature of the output. Many piecesi@iutput are specific
to particular options. The following is a guide to the ordéneh things will appear
in the output file, which in turn mirrors the order in which types are executed:

Banner gives the version number of the program
Keywords the program echoes the keywords it has foynd
in the input with the exception of some debug-
ging keywords which only affect the more verbose
pieces of output

Title if input by the user
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Structural output

Species output
Electrostatic accuracy paramets
Time limit for run
Interatomic potentials
Fitting output

Translate output

2I

for each configuration (structure) in turn the pr
gram will echo the structural information that w
input and any derived quantities in the followir
order:

contains all species/element specific data

fitting involves all structures and precedes
other calculation types so that they can use the
timised parameters

as translate performs the runtype for each pq
along the specified path it precedes the run t
output

Formula for compound (excluding shells)

Number of species in the asymmetric unit

Total number of species in the primitive ce

Dimensionality of system
For 3-D systems only

— Symmetry information
— Cell vectors for primitive cell

— Cell parameters for primitive and fu
cell

— Cell volume
Temperature

Pressure

Coordinates (fractional for 3-D / Carte

sian for 0-D), including the site occupan

)\ Y

LY

and charge. Where applicable, coordinates

which are free to vary are indicated by
asterisk following them

Molecule listing (if requested)

Geometry analysis output (if requested)

AN

all
op-

DiNt
ype

139



Runtype output the output appears for each configuration in
following order subject to the runtype having be
requested by the user:

e Electronegativity equalisation

e Optimisation / energy / gradient calcul
tion - for non-primitive unit cells values ar
given for the primitive cell unless specifie
otherwise

e Property calculation
e Phonon calculations
e Electrostatic potential and derivatives
e Molecular dynamics

e Defect calculation

Timing information
File output information

the
n

1)

D

d

3.3.2 Files for graphical display

Both phonon dispersion and phonon density of states cdilentaproduce infor-
mation which is suitable for graphic display. Although thes a crude picture
generated in the GULP output it is rather limited by the textune of the output
file. The commanadut put phonon can be used to dump the data generated by
GULP to two files with the extensions ‘.dens’ and ‘.disp’ whican then be ex-
ported into a graph plotting program (after suitable modiiimn) to produce proper
plots.

3.3.3 Input files for other programs

The out put option allows the user to generate input files for a numbertoéio
programs, both for displaying crystal structures and ftveotypes of run. The file
types available are summarised below:
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Marvin (.mvn) for a surface calculation

THBREL (.thb) for a calculation using the program THBREL - ho
longer supported

xtl (.xtl) for input to the Insight graphical interface from
Molecular Simulations Inc. Only applicable to
solids.

Xr (.xr) for input to the G-Vis interface from Oxford Ma-
terials (modified CSSR file format)

arc (.arc/.car) for input to the Insight graphical intedaitom

MSI. Available for bulk, cluster and defect cal-
culations (each type produces a separate file with
the type appended to the name). This file car be
generated to contain multiple structures for visu-

alisation as a movie.

cssr (.cssr) for input into the Ceriti;iterface from MSI and
other programs. Available for bulk calculations

fdf (.fdf) contains the structural information in a form su
able for SIESTA

drv (.drv) energy and derivatives for use in QM/MM
schemes

frc (.frc) energy and force constants for use in QM/MM
schemes

cif (.cif) simple CIF file format for general use - currently
only uses P1 symmetry

str (.str) CRYSTAL98 format for viewing with DLV

Note that when generating input files for other programsehgmo guarantee of
compatibility due to differences in features or becausenhaihges in format.

3.3.4 Temporary files

Some use is made by GULP of binary scratch files for certairtypas. Most are
transient files which are removed before the end of a run. Tmmal reason for
their existence is to economise on memory by allowing largaya to be overlaid.
The following is a list of the Fortran channels that may bedused what they are
used for (a ‘D’ in brackets indicates that the file should btoaatically deleted
before successful completion of a job):
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31/32 | restart files for a molecular dynamics run
41/42 | defect information needed during execution only (D)

44 restart file for a defect calculation to avoid bulk proper&on
48 region 2a displacements if needed for move_2a_to_1 opbdn (
51 storage of frequencies for passing between routines (D)

54 storage of transformation matrix when overwriting array (D
59 projection of phonons needed for project_dos option (D)

3.4 Guide to installation

Prior to compiling the code there is one file which may needaedited as it con-
tains system specific information though the code will stinpile and run if this
is not done:

local.F : This file contains two strings which specify where the filésdata and
help.txt can be found on your system should they not be ptesehe execution
directory. There is also a default library directory pomté&ou need to change
the path to point to the directory where these files will resith your machine. If
GULP cannot find the element information file on your machimentthe default
values will be set.

After this all you need to do on most Unix machines is type "gfak
If you wish to run the program in parallel using MPI then youdlweed to alter
the file "getmachine" accordingly. The usual changes woeltbtadd the "-DMPI"

option and in some cases change the compiler name (for egdowplpif77/mpif90)
or include the MPI libraries in the link stage.
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